login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321565
a(n) = Sum_{d divides n} (-1)^(d + n/d) * d^9.
52
1, -513, 19684, -261633, 1953126, -10097892, 40353608, -133955073, 387440173, -1001953638, 2357947692, -5149983972, 10604499374, -20701400904, 38445332184, -68584996353, 118587876498, -198756808749, 322687697780, -511002214758
OFFSET
1,2
FORMULA
G.f.: Sum_{k>=1} (-1)^(k+1)*k^9*x^k/(1 + x^k). - Ilya Gutkovskiy, Dec 22 2018
Multiplicative with a(2^e) = -3*(85*2^(9*e+1) + 341)/511, and a(p^e) = (p^(9*e+9) - 1)/(p^9 - 1) for p > 2. - Amiram Eldar, Nov 22 2022
MATHEMATICA
CoefficientList[Series[Sum[(-1)^(k+1) k^9 x^k/(1+x^k), {k, 20}], {x, 0, 20}], x] (* Harvey P. Dale, Apr 09 2019 *)
a[n_] := DivisorSum[n, (-1)^(# + n/#)*#^9 &]; Array[a, 25] (* Amiram Eldar, Nov 22 2022 *)
PROG
(PARI) apply( A321565(n)=sumdiv(n, d, (-1)^(n\d-d)*d^9), [1..30]) \\ M. F. Hasler, Nov 26 2018
CROSSREFS
Column k=9 of A322083.
Cf. A321543 - A321564, A321807 - A321836 for similar sequences.
Sequence in context: A223651 A353942 A351272 * A351304 A017681 A013957
KEYWORD
sign,mult
AUTHOR
N. J. A. Sloane, Nov 23 2018
STATUS
approved