login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321561
a(n) = Sum_{d divides n} (-1)^(d + n/d) * d^5.
3
1, -33, 244, -993, 3126, -8052, 16808, -31713, 59293, -103158, 161052, -242292, 371294, -554664, 762744, -1014753, 1419858, -1956669, 2476100, -3104118, 4101152, -5314716, 6436344, -7737972, 9768751, -12252702, 14408200, -16690344, 20511150
OFFSET
1,2
FORMULA
G.f.: Sum_{k>=1} (-1)^(k+1)*k^5*x^k/(1 + x^k). - Ilya Gutkovskiy, Nov 27 2018
Multiplicative with a(2^e) = -3*(5*2^(5*e+1) + 21)/31, and a(p^e) = (p^(5*e+5) - 1)/(p^5 - 1) for p > 2. - Amiram Eldar, Nov 22 2022
MATHEMATICA
a[n_] := DivisorSum[n, (-1)^(# + n/#)*#^5 &]; Array[a, 50] (* Amiram Eldar, Nov 27 2018 *)
PROG
(PARI) apply( A321561(n)=sumdiv(n, d, (-1)^(n\d-d)*d^5), [1..30]) \\ M. F. Hasler, Nov 26 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[(-1)^(k+1)*k^5*x^k/(1 + x^k) : k in [1..2*m]]) )); // G. C. Greubel, Nov 28 2018
(Sage) s=(sum((-1)^(k+1)*k^5*x^k/(1 + x^k) for k in (1..50))).series(x, 50); a = s.coefficients(x, sparse=False); a[1:] # G. C. Greubel, Nov 28 2018
CROSSREFS
Column k=5 of A322083.
Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Sequence in context: A178448 A351268 A088703 * A034679 A351300 A017673
KEYWORD
sign,mult
AUTHOR
N. J. A. Sloane, Nov 23 2018
STATUS
approved