login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062728
Second 11-gonal (or hendecagonal) numbers: a(n) = n*(9*n+7)/2.
16
0, 8, 25, 51, 86, 130, 183, 245, 316, 396, 485, 583, 690, 806, 931, 1065, 1208, 1360, 1521, 1691, 1870, 2058, 2255, 2461, 2676, 2900, 3133, 3375, 3626, 3886, 4155, 4433, 4720, 5016, 5321, 5635, 5958, 6290, 6631, 6981, 7340, 7708, 8085, 8471, 8866, 9270
OFFSET
0,2
COMMENTS
Old name: Write 0,1,2,3,4,... in a triangular spiral, then a(n) is the sequence found by reading the line from 0 in the direction 0,8,...
Sequence found by reading the line from 0, in the direction 0, 25, ... and the line from 8, in the direction 8, 51, ..., in the square spiral whose vertices are the generalized 11-gonal numbers A195160. - Omar E. Pol, Jul 24 2012
FORMULA
a(n) = n*(9*n+7)/2.
a(n) = 9*n + a(n-1) - 1 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
From Bruno Berselli, Jan 13 2011: (Start)
G.f.: x*(8 + x)/(1 - x)^3.
a(n) = Sum_{i=0..n-1} A017257(i) for n > 0. (End)
a(n) = A218470(9n+7). - Philippe Deléham, Mar 27 2013
E.g.f.: x*(16 + 9*x)*exp(x)/2. - G. C. Greubel, May 24 2019
EXAMPLE
The spiral begins:
15
/ \
16 14
/ \
17 3 13
/ / \ \
18 4 2 12
/ / \ \
19 5 0---1 11
/ / \
20 6---7---8---9--10
MATHEMATICA
Table[n*(9*n+7)/2, {n, 0, 50}] (* G. C. Greubel, May 24 2019 *)
LinearRecurrence[{3, -3, 1}, {0, 8, 25}, 50] (* Harvey P. Dale, Sep 06 2019 *)
PROG
(PARI) a(n)=n*(9*n+7)/2 \\ Charles R Greathouse IV, Jun 17 2017
(Magma) [n*(9*n+7)/2: n in [0..50]]; // G. C. Greubel, May 24 2019
(Sage) [n*(9*n+7)/2 for n in (0..50)] # G. C. Greubel, May 24 2019
(GAP) List([0..50], n-> n*(9*n+7)/2) # G. C. Greubel, May 24 2019
CROSSREFS
Cf. A051682.
Second n-gonal numbers: A005449, A014105, A147875, A045944, A179986, A033954, this sequence, A135705.
Sequence in context: A344714 A164754 A204467 * A273982 A244942 A143371
KEYWORD
nonn,easy
AUTHOR
Floor van Lamoen, Jul 21 2001
EXTENSIONS
New name from Bruno Berselli (with the original formula), Jan 13 2011
STATUS
approved