login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204467
Number of 3-element subsets that can be chosen from {1,2,...,6*n+3} having element sum 9*n+6.
2
1, 8, 25, 50, 85, 128, 181, 242, 313, 392, 481, 578, 685, 800, 925, 1058, 1201, 1352, 1513, 1682, 1861, 2048, 2245, 2450, 2665, 2888, 3121, 3362, 3613, 3872, 4141, 4418, 4705, 5000, 5305, 5618, 5941, 6272, 6613, 6962, 7321, 7688, 8065, 8450, 8845, 9248, 9661
OFFSET
0,2
COMMENTS
a(n) is the number of partitions of 9*n+6 into 3 distinct parts <= 6*n+3.
FORMULA
a(n) = 1+floor((3+9/2*n)*n).
G.f.: -(2*x+1)*(x^2+4*x+1)/((x+1)*(x-1)^3).
a(n) = (6*n*(3*n+2)+(-1)^n+3)/4. - Bruno Berselli, Jan 17 2012
a(0)=1, a(1)=8, a(2)=25, a(3)=50, a(n)=2*a(n-1)-2*a(n-3)+a(n-4). - Harvey P. Dale, May 25 2015
EXAMPLE
a(1) = 8 because there are 8 3-element subsets that can be chosen from {1,2,...,9} having element sum 15: {1,5,9}, {1,6,8}, {2,4,9}, {2,5,8}, {2,6,7}, {3,4,8}, {3,5,7}, {4,5,6}.
MAPLE
a:= n-> 1 +floor((3+9/2*n)*n):
seq(a(n), n=0..50);
MATHEMATICA
Table[(6n(3n+2)+(-1)^n+3)/4, {n, 0, 50}] (* or *) LinearRecurrence[{2, 0, -2, 1}, {1, 8, 25, 50}, 50] (* Harvey P. Dale, May 25 2015 *)
CROSSREFS
Bisection of column k=3 of A204459.
Cf. A104185.
Sequence in context: A089613 A344714 A164754 * A062728 A273982 A244942
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Jan 16 2012
STATUS
approved