login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204470
Number of 6-element subsets that can be chosen from {1,2,...,6*n} having element sum 18*n+3.
2
0, 1, 58, 676, 3486, 11963, 32134, 73294, 148718, 276373, 479632, 787986, 1237756, 1872809, 2745266, 3916220, 5456444, 7447107, 9980486, 13160678, 17104314, 21941271, 27815384, 34885162, 43324496, 53323377, 65088604, 78844500, 94833624, 113317483, 134577246
OFFSET
0,3
COMMENTS
a(n) is the number of partitions of 18*n+3 into 6 distinct parts <= 6*n.
LINKS
FORMULA
G.f.: x*(32*x^9 +352*x^8 +979*x^7 +1370*x^6 +1425*x^5 +1394*x^4 +1072*x^3 +449*x^2 +54*x+1) / ((x+1)*(x^4+x^3+x^2+x+1)*(x-1)^6).
EXAMPLE
a(2) = 58 because there are 58 6-element subsets that can be chosen from {1,2,...,12} having element sum 39: {1,2,3,10,11,12}, {1,2,4,9,11,12}, ..., {3,5,6,7,8,10}, {4,5,6,7,8,9}.
MAPLE
a:= n-> (Matrix(11, (i, j)-> `if`(i=j-1, 1, `if`(i=11, [-1, 4, -5, 0, 5, -3, -3, 5, 0, -5, 4][j], 0)))^n. <<0, 1, 58, 676, 3486, 11963, 32134, 73294, 148718, 276373, 479632>>)[1, 1]: seq(a(n), n=0..50);
CROSSREFS
Column k=6 of A204459.
Sequence in context: A249468 A232378 A246894 * A254954 A172215 A305263
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Jan 16 2012
STATUS
approved