login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246894
Number of length 2+4 0..n arrays with some pair in every consecutive five terms totalling exactly n.
1
58, 673, 3364, 12481, 33294, 79345, 159688, 303169, 521890, 866881, 1351788, 2057473, 2996854, 4289041, 5943184, 8125825, 10838538, 14305249, 18515380, 23760961, 30013918, 37645873, 46605144, 57355201, 69813874, 84549505
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 8*a(n-3) - 2*a(n-4) + 12*a(n-5) - 2*a(n-6) - 8*a(n-7) + 3*a(n-8) + 2*a(n-9) - a(n-10).
Conjectures from Colin Barker, Nov 07 2018: (Start)
G.f.: x*(58 + 557*x + 1844*x^2 + 4198*x^3 + 3740*x^4 + 2876*x^5 - 268*x^6 - 1486*x^7 + 2*x^8 - x^9) / ((1 - x)^6*(1 + x)^4).
a(n) = 1 - 72*n + 146*n^2 - 57*n^3 + 31*n^4 + 6*n^5 for n even.
a(n) = -101 + 84*n + 99*n^2 - 61*n^3 + 31*n^4 + 6*n^5 for n odd.
(End)
EXAMPLE
Some solutions for n=6:
..4....4....0....0....5....2....5....4....0....2....4....4....5....4....4....3
..2....4....3....0....5....3....3....5....6....3....6....0....5....2....4....6
..4....5....4....3....2....4....2....0....6....5....1....1....4....3....6....5
..2....0....3....6....5....2....3....0....3....5....2....0....1....2....5....1
..6....1....6....2....1....2....4....1....3....1....4....5....0....1....2....3
..0....1....4....4....5....4....3....3....3....1....5....6....1....4....0....4
CROSSREFS
Row 2 of A246892.
Sequence in context: A249003 A249468 A232378 * A204470 A254954 A172215
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 06 2014
STATUS
approved