login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204472
Number of 8-element subsets that can be chosen from {1,2,...,8*n} having element sum 32*n+4.
2
0, 1, 526, 17575, 178870, 1016737, 4083008, 13011585, 35154340, 83916031, 181913856, 365087337, 687884214, 1229647953, 2102332580, 3459670513, 5507918992, 8518310823, 12841335118, 18922973607, 27323018256, 38735595881, 54012025302, 74186132807, 100502151596
OFFSET
0,3
COMMENTS
a(n) is the number of partitions of 32*n+4 into 8 distinct parts <= 8*n.
LINKS
FORMULA
G.f.: x*(289*x^20 +11190*x^19 +91493*x^18 +352388*x^17 +898356*x^16 +1737191*x^15 +2761013*x^14 +3796426*x^13 +4655081*x^12 +5159765*x^11 +5190716*x^10 +4740985*x^9 +3917109*x^8 +2893806*x^7 +1858105*x^6 +988551*x^5 +403560*x^4 +111720*x^3 +15477*x^2 +522*x+1) / ((x^4+x^3+x^2+x+1)*(x^6+x^5+x^4+x^3+x^2+x+1)*(x^2+x+1)^2*(x-1)^8).
EXAMPLE
a(2) = 526 because there are 526 8-element subsets that can be chosen from {1,2,...,16} having element sum 68: {1,2,3,4,13,14,15,16}, {1,2,3,5,12,14,15,16}, ..., {4,6,7,8,9,10,11,13}, {5,6,7,8,9,10,11,12}.
MAPLE
a:= n-> (Matrix(22, (i, j)-> `if`(i=j-1, 1, `if`(i=22, [-1, 4, -6, 6, -9, 13, -13, 13, -16, 19, -19, 18, -19, 19, -16, 13, -13, 13, -9, 6, -6, 4][j], 0)))^n. <<0, 1, 526, 17575, 178870, 1016737, 4083008, 13011585, 35154340, 83916031, 181913856, 365087337, 687884214, 1229647953, 2102332580, 3459670513, 5507918992, 8518310823, 12841335118, 18922973607, 27323018256, 38735595881>>)[1, 1]: seq(a(n), n=0..50);
CROSSREFS
Column k=8 of A204459.
Sequence in context: A020379 A251022 A251108 * A264804 A093226 A153660
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Jan 16 2012
STATUS
approved