login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204469
Number of 5-element subsets that can be chosen from {1,2,...,10*n+5} having element sum 25*n+15.
2
1, 141, 1394, 5910, 17053, 39361, 78602, 141702, 236833, 373309, 561704, 813722, 1142341, 1561651, 2087034, 2734970, 3523243, 4470721, 5597592, 6925112, 8475873, 10273519, 12343044, 14710482, 17403231, 20449711, 23879724, 27724080, 32014983, 36785631, 42070632
OFFSET
0,2
COMMENTS
a(n) is the number of partitions of 25*n+15 into 5 distinct parts <= 10*n+5.
LINKS
FORMULA
G.f.: -(12*x^10 +390*x^9 +1821*x^8 +4057*x^7 +6070*x^6 +6651*x^5 +5374*x^4 +3123*x^3 +1112*x^2 +139*x+1) / ((x^2+x+1)*(x^2+1)*(x+1)^2*(x-1)^5).
EXAMPLE
a(0) = 1 because there is 1 5-element subset that can be chosen from {1,2,3,4,5} having element sum 15: {1,2,3,4,5}.
MAPLE
a:= n-> (Matrix(11, (i, j)-> `if`(i=j-1, 1, `if`(i=11, [1, -2, 0, 1, 0, 2, -2, 0, -1, 0, 2][j], 0)))^n. <<1, 141, 1394, 5910, 17053, 39361, 78602, 141702, 236833, 373309, 561704>>)[1, 1]: seq(a(n), n=0..50);
CROSSREFS
Bisection of column k=5 of A204459.
Sequence in context: A235760 A201814 A235543 * A201553 A281560 A186955
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Jan 16 2012
STATUS
approved