login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A204469 Number of 5-element subsets that can be chosen from {1,2,...,10*n+5} having element sum 25*n+15. 2
1, 141, 1394, 5910, 17053, 39361, 78602, 141702, 236833, 373309, 561704, 813722, 1142341, 1561651, 2087034, 2734970, 3523243, 4470721, 5597592, 6925112, 8475873, 10273519, 12343044, 14710482, 17403231, 20449711, 23879724, 27724080, 32014983, 36785631, 42070632 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
a(n) is the number of partitions of 25*n+15 into 5 distinct parts <= 10*n+5.
LINKS
FORMULA
G.f.: -(12*x^10 +390*x^9 +1821*x^8 +4057*x^7 +6070*x^6 +6651*x^5 +5374*x^4 +3123*x^3 +1112*x^2 +139*x+1) / ((x^2+x+1)*(x^2+1)*(x+1)^2*(x-1)^5).
EXAMPLE
a(0) = 1 because there is 1 5-element subset that can be chosen from {1,2,3,4,5} having element sum 15: {1,2,3,4,5}.
MAPLE
a:= n-> (Matrix(11, (i, j)-> `if`(i=j-1, 1, `if`(i=11, [1, -2, 0, 1, 0, 2, -2, 0, -1, 0, 2][j], 0)))^n. <<1, 141, 1394, 5910, 17053, 39361, 78602, 141702, 236833, 373309, 561704>>)[1, 1]: seq(a(n), n=0..50);
CROSSREFS
Bisection of column k=5 of A204459.
Sequence in context: A235760 A201814 A235543 * A201553 A281560 A186955
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Jan 16 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 01:39 EST 2023. Contains 367505 sequences. (Running on oeis4.)