|
|
A204468
|
|
Number of 4-element subsets that can be chosen from {1,2,...,4*n} having element sum 8*n+2.
|
|
2
|
|
|
0, 1, 8, 33, 86, 177, 318, 519, 790, 1143, 1588, 2135, 2796, 3581, 4500, 5565, 6786, 8173, 9738, 11491, 13442, 15603, 17984, 20595, 23448, 26553, 29920, 33561, 37486, 41705, 46230, 51071, 56238, 61743, 67596, 73807, 80388, 87349, 94700, 102453, 110618, 119205
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(n) is the number of partitions of 8*n+2 into 4 distinct parts <= 4*n.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x*(5*x^4+9*x^3+12*x^2+5*x+1)/((x^2+x+1)*(x-1)^4).
|
|
EXAMPLE
|
a(2) = 8 because there are 8 4-element subsets that can be chosen from {1,2,...,8} having element sum 18: {1,2,7,8}, {1,3,6,8}, {1,4,5,8}, {1,4,6,7}, {2,3,5,8}, {2,3,6,7}, {2,4,5,7}, {3,4,5,6}.
|
|
MAPLE
|
a:= n-> ((9+(16*n-18)*n)*n +[0, 2, -2][irem(n, 3)+1])/9:
seq(a(n), n=0..50);
|
|
MATHEMATICA
|
LinearRecurrence[{3, -3, 2, -3, 3, -1}, {0, 1, 8, 33, 86, 177}, 50] (* or *) CoefficientList[Series[(x (1+5 x+12 x^2+9 x^3+5 x^4))/((-1+x)^4 (1+x+x^2)), {x, 0, 50}], x] (* Harvey P. Dale, Feb 25 2021 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|