The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022274 a(n) = n*(17*n - 1)/2. 3
 0, 8, 33, 75, 134, 210, 303, 413, 540, 684, 845, 1023, 1218, 1430, 1659, 1905, 2168, 2448, 2745, 3059, 3390, 3738, 4103, 4485, 4884, 5300, 5733, 6183, 6650, 7134, 7635, 8153, 8688, 9240, 9809, 10395, 10998, 11618, 12255, 12909, 13580, 14268, 14973 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = 17*n + a(n-1) - 9 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010 From Vincenzo Librandi, Mar 31 2015: (Start) G.f.: x*(8 + 9*x)/(1 - x)^3. a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. (End) a(n) = A022275(-n). - Bruno Berselli, Mar 31 2015 a(n) = A000217(9*n-1) - A000217(8*n-1). - Bruno Berselli, Oct 17 2016 E.g.f.: (x/2)*(17*x + 16)*exp(x). - G. C. Greubel, Aug 23 2017 MATHEMATICA Table[n (17 n - 1)/2, {n, 0, 40}] (* Bruno Berselli, Mar 12 2015 *) CoefficientList[Series[x (8 + 9 x) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 31 2015 *) LinearRecurrence[{3, -3, 1}, {0, 8, 3 3}, 50] (* Harvey P. Dale, Feb 18 2016 *) PROG (MAGMA) [n*(17*n - 1)/2: n in [0..45]]; // Vincenzo Librandi, Mar 31 2015 (PARI) a(n)=n*(17*n-1)/2 \\ Charles R Greathouse IV, Jun 17 2017 CROSSREFS Cf. A000217, A022275. Cf. similar sequences listed in A022288. Sequence in context: A319524 A107291 A044466 * A118312 A212679 A204468 Adjacent sequences:  A022271 A022272 A022273 * A022275 A022276 A022277 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Vincenzo Librandi, Mar 31 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 14:45 EST 2020. Contains 332136 sequences. (Running on oeis4.)