login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A251108 Number of (n+1)X(3+1) 0..2 arrays with no 2X2 subblock having the maximum of its diagonal elements greater than the absolute difference of its antidiagonal elements 1
526, 3616, 19131, 99147, 549944, 3097574, 17154384, 94541640, 523362695, 2902098174, 16074820995, 88991683894, 492794584784, 2729305867906, 15115136455485, 83704974778717, 463549806671218, 2567128453854706 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 3 of A251113

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 21*a(n-1) -208*a(n-2) +1340*a(n-3) -6378*a(n-4) +23759*a(n-5) -71215*a(n-6) +174232*a(n-7) -350668*a(n-8) +582938*a(n-9) -801786*a(n-10) +912272*a(n-11) -856248*a(n-12) +658631*a(n-13) -408814*a(n-14) +196251*a(n-15) -63460*a(n-16) +5494*a(n-17) +6902*a(n-18) -3702*a(n-19) +790*a(n-20) -368*a(n-21) +453*a(n-22) -295*a(n-23) +89*a(n-24) -7*a(n-25) -a(n-26) for n>27

EXAMPLE

Some solutions for n=4

..0..0..0..1....0..0..1..2....1..1..1..2....1..0..2..2....0..0..1..2

..2..0..0..0....0..0..1..1....0..0..0..2....1..1..0..1....0..0..1..0

..2..2..2..0....0..0..0..0....0..0..0..2....0..1..0..0....0..0..1..1

..0..0..2..0....2..2..0..0....1..1..0..2....0..1..1..0....1..1..0..0

..1..0..2..1....0..2..0..0....0..1..0..2....2..0..1..0....2..1..0..0

CROSSREFS

Sequence in context: A294984 A020379 A251022 * A204472 A264804 A093226

Adjacent sequences:  A251105 A251106 A251107 * A251109 A251110 A251111

KEYWORD

nonn

AUTHOR

R. H. Hardin, Nov 30 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 09:24 EDT 2022. Contains 353975 sequences. (Running on oeis4.)