login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251107
Number of (n+1) X (2+1) 0..2 arrays with no 2 X 2 subblock having the maximum of its diagonal elements greater than the absolute difference of its antidiagonal elements
1
147, 810, 3616, 15281, 67518, 304870, 1369052, 6118942, 27356256, 122402144, 547700666, 2450461705, 10963429165, 49051483677, 219461893981, 981894966609, 4393096675995, 19655164658898, 87939229945039, 393449138915943
OFFSET
1,1
COMMENTS
Column 2 of A251113.
FORMULA
Empirical: a(n) = 11*a(n-1) - 53*a(n-2) + 169*a(n-3) - 400*a(n-4) + 717*a(n-5) - 999*a(n-6) + 1063*a(n-7) - 860*a(n-8) + 543*a(n-9) - 268*a(n-10) + 115*a(n-11) - 40*a(n-12) + 9*a(n-13) - a(n-14).
Empirical formula verified: see link. - Robert Israel, Feb 03 2019
EXAMPLE
Some solutions for n=4:
0 0 2 1 2 2 0 2 2 1 0 1 0 0 1 0 0 0 0 0 2
0 0 2 0 0 2 1 0 2 1 0 1 0 0 1 2 2 2 0 0 2
0 0 0 1 0 2 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0
2 0 0 1 0 0 2 0 0 0 1 1 1 0 0 2 2 2 1 0 0
2 2 2 2 2 2 2 2 1 0 0 0 2 1 0 0 0 0 2 1 0
MAPLE
f:= proc(i, j)
local Li, Lj;
Li:= convert(i+27, base, 3)[1..3];
Lj:= convert(j+27, base, 3)[1..3];
if max(Li[1], Lj[2])<=abs(Li[2]-Lj[1])
and max(Li[2], Lj[3])<=abs(Li[3]-Lj[2])
then 1 else 0
fi
end proc:
T:= Matrix(27, 27, f):
u:= Vector(27, 1):
Tu[0]:= u:
for n from 1 to 30 do Tu[n]:= T . Tu[n-1] od:
seq(u^%T . Tu[n], n=1..30); # Robert Israel, Feb 03 2019
CROSSREFS
Sequence in context: A162701 A063701 A261939 * A349987 A183741 A020328
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 30 2014
STATUS
approved