login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251113
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no 2X2 subblock having the maximum of its diagonal elements greater than the absolute difference of its antidiagonal elements
9
37, 147, 147, 526, 810, 526, 1844, 3616, 3616, 1844, 6544, 15281, 19131, 15281, 6544, 23334, 67518, 99147, 99147, 67518, 23334, 83126, 304870, 549944, 667626, 549944, 304870, 83126, 295938, 1369052, 3097574, 4633551, 4633551, 3097574, 1369052
OFFSET
1,1
COMMENTS
Table starts
......37.......147........526........1844..........6544..........23334
.....147.......810.......3616.......15281.........67518.........304870
.....526......3616......19131.......99147........549944........3097574
....1844.....15281......99147......667626.......4633551.......32006770
....6544.....67518.....549944.....4633551......39326009......336432413
...23334....304870....3097574....32006770.....336432413.....3656310083
...83126...1369052...17154384...219945737....2909254399....39932445704
..295938...6118942...94541640..1519227598...25213072536...430092324035
.1053609..27356256..523362695.10534571961..217873020830..4617478843871
.3751373.122402144.2902098174.72985741167.1882537978094.49985974667101
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 5*a(n-1) -8*a(n-2) +13*a(n-3) -12*a(n-4) +9*a(n-5) -5*a(n-6) +a(n-7)
k=2: [order 14]
k=3: [order 26] for n>27
k=4: [order 52] for n>54
EXAMPLE
Some solutions for n=3 k=4
..1..0..1..2..2....0..1..1..1..2....0..0..0..0..0....1..0..1..0..2
..1..0..1..0..1....1..0..0..0..1....1..0..0..0..0....2..0..1..0..1
..1..0..1..1..0....1..0..0..0..1....1..1..1..0..0....2..0..1..0..1
..2..0..0..1..0....2..2..2..2..0....2..0..1..1..0....2..0..1..0..0
CROSSREFS
Sequence in context: A262921 A031690 A157324 * A251106 A141968 A142656
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 30 2014
STATUS
approved