login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no 2X2 subblock having the maximum of its diagonal elements greater than the absolute difference of its antidiagonal elements
9

%I #4 Nov 30 2014 07:13:54

%S 37,147,147,526,810,526,1844,3616,3616,1844,6544,15281,19131,15281,

%T 6544,23334,67518,99147,99147,67518,23334,83126,304870,549944,667626,

%U 549944,304870,83126,295938,1369052,3097574,4633551,4633551,3097574,1369052

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no 2X2 subblock having the maximum of its diagonal elements greater than the absolute difference of its antidiagonal elements

%C Table starts

%C ......37.......147........526........1844..........6544..........23334

%C .....147.......810.......3616.......15281.........67518.........304870

%C .....526......3616......19131.......99147........549944........3097574

%C ....1844.....15281......99147......667626.......4633551.......32006770

%C ....6544.....67518.....549944.....4633551......39326009......336432413

%C ...23334....304870....3097574....32006770.....336432413.....3656310083

%C ...83126...1369052...17154384...219945737....2909254399....39932445704

%C ..295938...6118942...94541640..1519227598...25213072536...430092324035

%C .1053609..27356256..523362695.10534571961..217873020830..4617478843871

%C .3751373.122402144.2902098174.72985741167.1882537978094.49985974667101

%H R. H. Hardin, <a href="/A251113/b251113.txt">Table of n, a(n) for n = 1..364</a>

%F Empirical for column k:

%F k=1: a(n) = 5*a(n-1) -8*a(n-2) +13*a(n-3) -12*a(n-4) +9*a(n-5) -5*a(n-6) +a(n-7)

%F k=2: [order 14]

%F k=3: [order 26] for n>27

%F k=4: [order 52] for n>54

%e Some solutions for n=3 k=4

%e ..1..0..1..2..2....0..1..1..1..2....0..0..0..0..0....1..0..1..0..2

%e ..1..0..1..0..1....1..0..0..0..1....1..0..0..0..0....2..0..1..0..1

%e ..1..0..1..1..0....1..0..0..0..1....1..1..1..0..0....2..0..1..0..1

%e ..2..0..0..1..0....2..2..2..2..0....2..0..1..1..0....2..0..1..0..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Nov 30 2014