OFFSET
0,1
COMMENTS
If Y is a 6-subset of an n-set X then, for n>=8, a(n-8) is the number of 3-subsets of X having at most one element in common with Y. - Milan Janjic, Dec 16 2007
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..3000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = A096956(n+3, 3) = 6*b(n) - 5*b(n-1) = (n+18)*binomial(n+2, 2)/3, with b(n):=A000292(n)=binomial(n+3, 3).
G.f.: (6-5*x)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, Apr 19 2017
MATHEMATICA
CoefficientList[Series[(6 - 5*x)/(1 - x)^4, {x, 0, 40}], x] (* Wesley Ivan Hurt, Apr 18 2017 *)
LinearRecurrence[{4, -6, 4, -1}, {6, 19, 40, 70}, 50] (* Vincenzo Librandi, Apr 19 2017 *)
PROG
(Magma) I:=[6, 19, 40, 70]; [n le 4 select I[n] else 4*Self(n-1)- 6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Apr 19 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 13 2004
STATUS
approved