|
|
A096955
|
|
From Machin's formula: rational approximation for Pi/4 = 0.78539816339744... = A003881.
|
|
5
|
|
|
1195, 1706489875, 12184551018734375, 24359780855939418203125, 104359128170408663038552734375, 1639301884061026141391921953564453125, 30432532948821209122295591520605416259765625
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Machin's formula: Pi/4 = 4*arctan(1/5) - arctan(1/239).
Numerators are given in A096954.
|
|
REFERENCES
|
W. Walter, Analysis I (in German), Springer, 3. Auflage, 1992; p. 216.
|
|
LINKS
|
Table of n, a(n) for n=0..6.
Machin's formula from Mathworld.
W. Lang, more comments.
|
|
FORMULA
|
a(n) = denominator(M(n)), with M(n)=4*arctan(1/5, n) - arctan(1/239, n) with arctan(x, n):=sum((((-1)^k)*x^(2k+1))/(2*k+1), k=0..n).
|
|
EXAMPLE
|
A096954(7)/a(7) =
170660807873601670198453967268421248219727522686104 /217292089321202035784330810406062747771759033203125
= 0.78539816339715...
|
|
CROSSREFS
|
Sequence in context: A251916 A251915 A166221 * A113898 A059401 A059402
Adjacent sequences: A096952 A096953 A096954 * A096956 A096957 A096958
|
|
KEYWORD
|
nonn,frac,easy
|
|
AUTHOR
|
Wolfdieter Lang, Jul 23 2004
|
|
STATUS
|
approved
|
|
|
|