login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158062
a(n) = 36*n^2 - 2*n.
1
34, 140, 318, 568, 890, 1284, 1750, 2288, 2898, 3580, 4334, 5160, 6058, 7028, 8070, 9184, 10370, 11628, 12958, 14360, 15834, 17380, 18998, 20688, 22450, 24284, 26190, 28168, 30218, 32340, 34534, 36800, 39138, 41548, 44030, 46584, 49210, 51908
OFFSET
1,1
COMMENTS
The identity (36*n - 1)^2 - (36*n^2 - 2*n)*6^2 = 1 can be written as (A044102(n+1) - 1)^2 - a(n)*6^2 = 1. - Vincenzo Librandi, Feb 11 2012
The continued fraction expansion of sqrt(a(n)) is [6n-1; {1, 4, 1, 12n-2}]. - Magus K. Chu, Nov 08 2022
LINKS
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(6^2*t-2)).
FORMULA
G.f.: x*(-34 - 38*x)/(x-1)^3. - Vincenzo Librandi, Feb 11 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 11 2012
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {34, 140, 318}, 50] (* Vincenzo Librandi, Feb 11 2012 *)
PROG
(Magma)[36*n^2 - 2*n: n in [1..50]]
(PARI) for(n=1, 50, print1(36*n^2 - 2*n ", ")); \\ Vincenzo Librandi, Feb 11 2012
CROSSREFS
Cf. A044102.
Sequence in context: A044747 A172001 A303302 * A141127 A153465 A280550
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 12 2009
STATUS
approved