|
|
A044102
|
|
Multiples of 36.
|
|
10
|
|
|
0, 36, 72, 108, 144, 180, 216, 252, 288, 324, 360, 396, 432, 468, 504, 540, 576, 612, 648, 684, 720, 756, 792, 828, 864, 900, 936, 972, 1008, 1044, 1080, 1116, 1152, 1188, 1224, 1260, 1296, 1332, 1368, 1404, 1440, 1476, 1512, 1548, 1584, 1620, 1656, 1692
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Also, k such that Fibonacci(k) mod 27 = 0. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 18 2004
A033183(a(n)) = n+1. - Reinhard Zumkeller, Nov 07 2009
A122841(a(n)) > 1 for n > 0. - Reinhard Zumkeller, Nov 10 2013
Sum of the numbers from 4*(n-1) to 4*(n+1). - Bruno Berselli, Oct 25 2018
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,-1).
|
|
FORMULA
|
G.f.: 36*x/(1 - x)^2.
a(n) = A167632(n+1). - Reinhard Zumkeller, Nov 07 2009
a(n) = 36*n. - Vincenzo Librandi, Jan 26 2011
|
|
MAPLE
|
seq(coeff(series(36*x/(1-x)^2, x, n+1), x, n), n = 0 .. 50); # Muniru A Asiru, Oct 25 2018
|
|
MATHEMATICA
|
Range[0, 2000, 36] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *)
CoefficientList[Series[36 x/(1 - x)^2, {x, 0, 100}], x] (* Vincenzo Librandi, May 20 2014 *)
|
|
PROG
|
(Haskell)
a044102 = (* 36)
a044102_list = [0, 36 ..] -- Reinhard Zumkeller, Nov 10 2013
(MAGMA) [36*n: n in [0..50]]; // Vincenzo Librandi, May 20 2014
(PARI) a(n)=36*n \\ Charles R Greathouse IV, Oct 07 2015
(GAP) a:=[0, 36];; for n in [3..50] do a[n]:=2*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Oct 25 2018
|
|
CROSSREFS
|
Cf. A135631, A174312.
Subsequence of A008588.
Sequence in context: A114127 A322658 A224830 * A043370 A044483 A031479
Adjacent sequences: A044099 A044100 A044101 * A044103 A044104 A044105
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
Clark Kimberling
|
|
STATUS
|
approved
|
|
|
|