%I #57 Sep 08 2022 08:44:55
%S 0,36,72,108,144,180,216,252,288,324,360,396,432,468,504,540,576,612,
%T 648,684,720,756,792,828,864,900,936,972,1008,1044,1080,1116,1152,
%U 1188,1224,1260,1296,1332,1368,1404,1440,1476,1512,1548,1584,1620,1656,1692
%N Multiples of 36.
%C Also, k such that Fibonacci(k) mod 27 = 0. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 18 2004
%C A033183(a(n)) = n+1. - _Reinhard Zumkeller_, Nov 07 2009
%C A122841(a(n)) > 1 for n > 0. - _Reinhard Zumkeller_, Nov 10 2013
%C Sum of the numbers from 4*(n-1) to 4*(n+1). - _Bruno Berselli_, Oct 25 2018
%H Reinhard Zumkeller, <a href="/A044102/b044102.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F G.f.: 36*x/(1 - x)^2.
%F a(n) = A167632(n+1). - _Reinhard Zumkeller_, Nov 07 2009
%F a(n) = 36*n. - _Vincenzo Librandi_, Jan 26 2011
%p seq(coeff(series(36*x/(1-x)^2,x,n+1), x, n), n = 0 .. 50); # _Muniru A Asiru_, Oct 25 2018
%t Range[0, 2000, 36] (* _Vladimir Joseph Stephan Orlovsky_, May 31 2011 *)
%t CoefficientList[Series[36 x/(1 - x)^2, {x, 0, 100}], x] (* _Vincenzo Librandi_, May 20 2014 *)
%o (Haskell)
%o a044102 = (* 36)
%o a044102_list = [0, 36 ..] -- _Reinhard Zumkeller_, Nov 10 2013
%o (Magma) [36*n: n in [0..50]]; // _Vincenzo Librandi_, May 20 2014
%o (PARI) a(n)=36*n \\ _Charles R Greathouse IV_, Oct 07 2015
%o (GAP) a:=[0,36];; for n in [3..50] do a[n]:=2*a[n-1]-a[n-2]; od; a; # _Muniru A Asiru_, Oct 25 2018
%Y Cf. A135631, A174312.
%Y Subsequence of A008588.
%K nonn,base,easy
%O 0,2
%A _Clark Kimberling_