login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322658
Integers whose set of proper divisors, excluding 1, can be partitioned into two nonempty subsets having equal sum.
2
36, 72, 105, 144, 195, 200, 255, 288, 315, 324, 345, 385, 392, 400, 450, 495, 525, 576, 585, 648, 675, 735, 784, 800, 805, 825, 855, 882, 900, 945, 975, 1035, 1152, 1155, 1295, 1296, 1305, 1323, 1365, 1395, 1425, 1449, 1463, 1485, 1547, 1568, 1575, 1600, 1645, 1665, 1755, 1764, 1785
OFFSET
1,1
COMMENTS
Called half-layered numbers in Behzadipour link.
LINKS
Hussein Behzadipour, Two-layered numbers, arXiv:1812.07233 [math.NT], 2018.
EXAMPLE
36 is a term with {2, 3, 4, 18} and B = {6, 9, 12} having equal sums 27.
MAPLE
a:= proc(n) option remember; local k, l, t, b; b:=
proc(m, i) option remember; m=0 or i>0 and
(b(m, i-1) or l[i]<=m and b(m-l[i], i-1)) end;
for k from 1+`if`(n=1, 1, a(n-1)) do
if isprime(k) then next fi;
l:= sort([(numtheory[divisors](k) minus {1, k})[]]);
t:= add(i, i=l);
if t::even then forget(b);
if b(t/2, nops(l)) then return k fi
fi
od
end:
seq(a(n), n=1..60); # Alois P. Heinz, Dec 22 2018
MATHEMATICA
aQ[n_] := CompositeQ[n] && Module[{d = Rest[Most[Divisors[n]]], t, ds, x}, ds = Plus @@ d; If[Mod[ds, 2] > 0, False, t = CoefficientList[Product[1 + x^i, {i, d}], x]; t[[1 + ds/2]] > 0]]; Select[Range[2, 1785], aQ] (* Amiram Eldar, Dec 22 2018 after T. D. Noe at A083207 *)
PROG
(PARI) part(n, v)=if(n<1, return(n==0)); forstep(i=#v, 2, -1, if(part(n-v[i], v[1..i-1]), return(1))); n==v[1];
is(n)=my(d=divisors(n), dd = select(x->((x>1) && (x<n)), d), s=sum(i=1, #dd, dd[i])); if (#dd, s%2==0 && part(s/2-vecmax(dd), dd[1..#dd-1])); \\ both after pari in A083207
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Dec 22 2018
STATUS
approved