login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 34*n^2.
1

%I #37 Dec 02 2024 18:12:34

%S 0,34,136,306,544,850,1224,1666,2176,2754,3400,4114,4896,5746,6664,

%T 7650,8704,9826,11016,12274,13600,14994,16456,17986,19584,21250,22984,

%U 24786,26656,28594,30600,32674,34816,37026,39304,41650,44064,46546,49096,51714,54400,57154,59976,62866,65824,68850,71944

%N a(n) = 34*n^2.

%C Sequence found by reading the line from 0, in the direction 0, 34, ..., in the square spiral whose vertices are the generalized 19-gonal numbers A303813.

%H Colin Barker, <a href="/A303302/b303302.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 34*A000290(n) = 17*A001105(n) = 2*A244630(n).

%F G.f.: 34*x*(1 + x)/(1 - x)^3. - _Vincenzo Librandi_, Jun 07 2018

%F From _Elmo R. Oliveira_, Dec 02 2024: (Start)

%F E.g.f.: 34*x*(1 + x)*exp(x).

%F a(n) = A005843(n)*A008599(n).

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

%t Table[34 n^2, {n, 0, 40}]

%t LinearRecurrence[{3,-3,1},{0,34,136},50] (* _Harvey P. Dale_, Jul 23 2018 *)

%o (PARI) a(n) = 34*n^2;

%o (PARI) concat(0, Vec(34*x*(1 + x) / (1 - x)^3 + O(x^40))) \\ _Colin Barker_, Jun 12 2018

%o (Magma) [34*n^2: n in [0..50]]; // _Vincenzo Librandi_ Jun 07 2018

%Y Cf. A005843, A008599, A303813.

%Y Cf. similar sequences of the type k*n^2: A000290 (k=1), A001105 (k=2), A033428 (k=3), A016742 (k=4), A033429 (k=5), A033581 (k=6), A033582 (k=7), A139098 (k=8), A016766 (k=9), A033583 (k=10), A033584 (k=11), A135453 (k=12), A152742 (k=13), A144555 (k=14), A064761 (k=15), A016802 (k=16), A244630 (k=17), A195321 (k=18), A244631 (k=19), A195322 (k=20), A064762 (k=21), A195323 (k=22), A244632 (k=23), A195824 (k=24), A016850 (k=25), A244633 (k=26), A244634 (k=27), A064763 (k=28), A244635 (k=29), A244636 (k=30), A244082 (k=32), this sequence (k=34), A016910 (k=36), A016982 (k=49), A017066 (k=64), A017162 (k=81), A017270 (k=100), A017390 (k=121), A017522 (k=144).

%K nonn,easy,changed

%O 0,2

%A _Omar E. Pol_, May 13 2018