The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A017066 a(n) = (8*n)^2. 3
 0, 64, 256, 576, 1024, 1600, 2304, 3136, 4096, 5184, 6400, 7744, 9216, 10816, 12544, 14400, 16384, 18496, 20736, 23104, 25600, 28224, 30976, 33856, 36864, 40000, 43264, 46656, 50176, 53824, 57600, 61504, 65536, 69696, 73984, 78400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: -64*x*(1+x)/(x-1)^3. - R. J. Mathar, Jul 14 2016 a(n) = A000290(8*n) = A008590(n)^2 = A000290(A008590(n). From Amiram Eldar, Jan 25 2021: (Start) Sum_{n>=1} 1/a(n) = Pi^2/384. Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/768. Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/8)/(Pi/8). Product_{n>=1} (1 - 1/a(n)) = sin(Pi/8)/(Pi/8) = 4*sqrt(2-sqrt(2))/Pi. (End) MATHEMATICA LinearRecurrence[{3, -3, 1}, {0, 64, 256}, 50] (* Vincenzo Librandi, Feb 10 2012 *) PROG (MAGMA) [(8*n)^2: n in [0..35]]; // Vincenzo Librandi, Jul 10 2011 (PARI) a(n)=(8*n)^2 \\ Charles R Greathouse IV, Jun 17 2017 CROSSREFS Cf. A000290, A008590. Sequence in context: A263924 A236331 A321070 * A141478 A107262 A255662 Adjacent sequences:  A017063 A017064 A017065 * A017067 A017068 A017069 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 15:06 EST 2021. Contains 349557 sequences. (Running on oeis4.)