OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
G.f.: -64*x*(1+x)/(x-1)^3. - R. J. Mathar, Jul 14 2016
From Amiram Eldar, Jan 25 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/384.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/768.
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/8)/(Pi/8).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/8)/(Pi/8) = 4*sqrt(2-sqrt(2))/Pi. (End)
From Elmo R. Oliveira, Dec 06 2024: (Start)
E.g.f.: 64*exp(x)*x*(1 + x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {0, 64, 256}, 50] (* Vincenzo Librandi, Feb 10 2012 *)
PROG
(Magma) [(8*n)^2: n in [0..35]]; // Vincenzo Librandi, Jul 10 2011
(PARI) a(n)=(8*n)^2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved