login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263924 Numbers n such that there is a prime p > 3 and an exponent e such that the central binomial coefficient binomial(2n, n) is divisible by p^e but not by either 2^e or 3^e. 2
64, 256, 272, 324, 513, 514, 516, 544, 1026, 1028, 1032, 1064, 1088, 1089, 1216, 1544, 1552, 1568, 1569, 2052, 2056, 2064, 2188, 2192, 2193, 2194, 2208, 2224, 2244, 2248, 2304, 2313, 2314 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

How quickly does this sequence grow asymptotically?

A263922(a(n)) > max{A000120(a(n)),A000989(an(n))}. - Reinhard Zumkeller, Nov 19 2015

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000

FORMULA

a(n) >> n^1.014. (This is surely not optimal.) - Charles R Greathouse IV, Jan 18 2016

EXAMPLE

64 is a member because binomial(128,64) = 2 * 3 * 5^3 * ..., where the exponent 3 of 5 is greater than the exponents 1 and 1 of 2 and 3, respectively.

PROG

(PARI) f(n, p)=my(d=Vecrev(digits(n, p)), c); sum(i=1, #d, c=(2*d[i]+c>=p))

is(n)=my(r=max(hammingweight(n), f(n, 3))); forprime(p=5, sqrtnint(n, r+1), if(f(n, p)>r, return(p))); 0

(Haskell)

import Math.NumberTheory.Primes.Factorisation (factorise)

a263924 n = a263924_list !! (n-1)

a263924_list = filter f [2..] where

   f x = not (null pe23s) && any ((> e23) . snd) pes' where

         e23 = maximum (map snd pe23s)

         (pe23s, pes') = span ((<= 3) . fst) $ factorise $ a000984 x

-- Reinhard Zumkeller, Nov 01 2015

CROSSREFS

Cf. A263922, A000984, A000120, A000989.

Sequence in context: A218902 A197905 A223315 * A236331 A321070 A017066

Adjacent sequences:  A263921 A263922 A263923 * A263925 A263926 A263927

KEYWORD

nonn

AUTHOR

Charles R Greathouse IV, Oct 29 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 29 05:09 EST 2022. Contains 350672 sequences. (Running on oeis4.)