

A263924


Numbers n such that there is a prime p > 3 and an exponent e such that the central binomial coefficient binomial(2n, n) is divisible by p^e but not by either 2^e or 3^e.


2



64, 256, 272, 324, 513, 514, 516, 544, 1026, 1028, 1032, 1064, 1088, 1089, 1216, 1544, 1552, 1568, 1569, 2052, 2056, 2064, 2188, 2192, 2193, 2194, 2208, 2224, 2244, 2248, 2304, 2313, 2314
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

How quickly does this sequence grow asymptotically?


LINKS



FORMULA



EXAMPLE

64 is a member because binomial(128,64) = 2 * 3 * 5^3 * ..., where the exponent 3 of 5 is greater than the exponents 1 and 1 of 2 and 3, respectively.


PROG

(PARI) f(n, p)=my(d=Vecrev(digits(n, p)), c); sum(i=1, #d, c=(2*d[i]+c>=p))
is(n)=my(r=max(hammingweight(n), f(n, 3))); forprime(p=5, sqrtnint(n, r+1), if(f(n, p)>r, return(p))); 0
(Haskell)
import Math.NumberTheory.Primes.Factorisation (factorise)
a263924 n = a263924_list !! (n1)
a263924_list = filter f [2..] where
f x = not (null pe23s) && any ((> e23) . snd) pes' where
e23 = maximum (map snd pe23s)
(pe23s, pes') = span ((<= 3) . fst) $ factorise $ a000984 x


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



