login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A321070
Squares divisible by more than one cube > 1.
2
64, 256, 576, 729, 1024, 1296, 1600, 2304, 2916, 3136, 4096, 5184, 6400, 6561, 7744, 9216, 10000, 10816, 11664, 12544, 14400, 15625, 16384, 18225, 18496, 20736, 23104, 25600, 26244, 28224, 30976, 32400, 33856, 35721, 36864, 38416, 40000, 43264, 46656, 50176
OFFSET
1,1
LINKS
FORMULA
From Amiram Eldar, Jun 25 2022: (Start)
Equals A000290 \ (union of A062503 and A320965).
Sum_{n>=1} 1/a(n) = Pi^2/6 - (15/Pi^2) * (1 + Sum_{k>=2} (-1)^k * P(2*k)) = 0.029082273527998239268... . (End)
EXAMPLE
a(1) = 64 because 16^2 is divisible by 2^3 and by 4^3.
MATHEMATICA
Select[Range[225]^2, Max[(e = FactorInteger[#][[;; , 2]])] > 4 || (Length[e] > 1 && Sort[e, Greater][[2]] > 2) &] (* Amiram Eldar, Jun 25 2022 *)
PROG
(PARI) iscubes(n) = {my(nb = 0); fordiv(n, d, if ((d>1) && ispower(d, 3), nb++; if (nb > 1, return(1))); ); }
isok(n) = issquare(n) && iscubes(n); \\ Michel Marcus, Oct 27 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Oct 27 2018
STATUS
approved