OFFSET
0,2
COMMENTS
For n > 0, a(n) is the unique solution to x^2 == 3 (mod 11^n) in the range [0, 11^n - 1] and congruent to 5 modulo 11.
A321073 is the approximation (congruent to 6 mod 11) of another square root of 3 over the 11-adic field.
LINKS
Wikipedia, p-adic number
FORMULA
For n > 0, a(n) = 11^n - A321073(n).
a(n) = Sum_{i=0..n-1} A321074(i)*11^i.
a(n) == ((5 + sqrt(21))/2)^(11^n) + ((5 - sqrt(21))/2)^(11^n) (mod 11^n). - Peter Bala, Dec 04 2022
EXAMPLE
5^2 = 25 = 3 + 2*11.
27^2 = 729 = 3 + 6*11^2.
753^2 = 567009 = 3 + 426*11^3.
PROG
(PARI) a(n) = truncate(sqrt(3+O(11^n)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jianing Song, Oct 27 2018
STATUS
approved