login
A321075
Digits of one of the two 11-adic integers sqrt(3).
6
6, 8, 4, 2, 9, 1, 1, 6, 7, 1, 8, 2, 7, 6, 1, 9, 1, 7, 7, 10, 5, 5, 10, 1, 2, 6, 9, 1, 4, 1, 7, 10, 3, 5, 2, 4, 7, 1, 10, 1, 3, 3, 1, 2, 0, 5, 2, 4, 1, 7, 5, 1, 6, 3, 8, 9, 9, 10, 9, 10, 2, 9, 4, 5, 3, 0, 2, 8, 6, 3, 2, 3, 8, 7, 7, 9, 0, 4, 10, 0, 10, 4, 8, 5, 9, 0, 7
OFFSET
0,1
COMMENTS
This square root of 3 in the 11-adic field ends with digit 6. The other, A321074, ends with digit 5.
FORMULA
a(n) = (A321073(n+1) - A321073(n))/11^n.
For n > 0, a(n) = 10 - A321074(n).
This 11-adic integer equals the 11-adic limit as n -> oo of 2*T(11^n,3), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Dec 05 2022
EXAMPLE
...1A174253A71419621A55A7719167281761192486.
PROG
(PARI) a(n) = truncate(-sqrt(3+O(11^(n+1))))\11^n
CROSSREFS
Sequence in context: A350795 A352769 A335005 * A234846 A371467 A244054
KEYWORD
nonn,base,easy
AUTHOR
Jianing Song, Oct 27 2018
STATUS
approved