Using Chebyshev polynomials to find the p-adic square roots of 2 and 3

Peter Bala, Dec 042022
Let $p \equiv 1$ or $7(\bmod 8)$ be a prime. From elementary number theory we know that 2 is a quadratic residue modulo p, that is, there exists an integer k, $1<k<p-1$, such that $k^{2} \equiv 2(\bmod p)$. By Hensel's lemma, k lifts to a p-adic integer $\alpha(k)=k+a_{1} p+a_{2} p^{2}+\cdots, 0 \leq a_{i}<p-1$, such that $\alpha(k)^{2}=2$ in the ring of p-adic integers \mathbb{Z}_{p}. In these notes we show that $\alpha(k)$ is equal to the p-adic limit as $n \rightarrow \infty$ of the integer sequence $\left\{2 \mathrm{~T}_{p^{n}}\left(\frac{k}{2}\right)\right\}$, where $\left\{\mathrm{T}_{n}(x)\right\}$ is the sequence of Chebyshev polynomials of the first kind. We give similar results for the p-adic square roots of 3 .

1. Chebyshev polynomials

For information on Chebyshev polynomials see, for example, [Rivlin]. The classical Chebyshev polynomials of the first kind $\mathrm{T}_{n}(x)$ satisfy the secondorder linear recurrence $\mathrm{T}_{n}(x)=2 x \mathrm{~T}_{n-1}(x)-\mathrm{T}_{n-2}(x)$ with the starting values $\mathrm{T}_{0}(x)=1$ and $\mathrm{T}_{1}(x)=x$. We define the scaled Chebyshev polynomials of the first kind by $\widetilde{\mathrm{T}}_{n}(x)=2 \mathrm{~T}_{n}\left(\frac{x}{2}\right)$. Both the Chebyshev polynomials and the scaled Chebyshev polynomials have integer coefficients.

There is an explicit expansion

$$
\begin{equation*}
\widetilde{\mathrm{T}}_{n}(x)=x^{n}+\sum_{k=1}^{[n / 2]}(-1)^{k} \frac{n}{n-k}\binom{n-k}{k} x^{n-2 k} \quad[n \geq 1] . \tag{1}
\end{equation*}
$$

Thus $\widetilde{\mathrm{T}}_{n}(x), n \geq 1$, is a monic polynomial and for integer k and prime p we have

$$
\begin{equation*}
\widetilde{\mathrm{T}}_{p}(k) \equiv k(\bmod p) \tag{2}
\end{equation*}
$$

by Fermat's little theorem.
Proposition 1. For integer k and prime p, the sequence $\left\{\widetilde{\mathrm{T}}_{n}(k): n \geq 1\right\}$ satisfies the congruences

$$
\begin{equation*}
\widetilde{\mathrm{T}}_{p^{r}}(k) \equiv \widetilde{\mathrm{T}}_{p^{r-1}}(k)\left(\bmod p^{r}\right) \quad[r \geq 1] \tag{3}
\end{equation*}
$$

Proof. Recall that an integer sequence $\{a(n)\}$ satisfies the Gauss congruences if

$$
\begin{equation*}
a\left(m p^{r}\right) \equiv a\left(m p^{r-1}\right)\left(\bmod p^{r}\right) \tag{4}
\end{equation*}
$$

for all primes p and all positive integers m and r. A necessary and sufficient condition for a sequence $\{a(n)\}$ to satisfy the Gauss congruences is that the series expansion of

$$
\exp \left(\sum_{n \geq 1} a(n) \frac{t^{n}}{n}\right)
$$

has integer coefficients [Carlitz].

The ordinary generating function for the Chebyshev polynomials T_{n} is

$$
\sum_{n \geq 0} \mathrm{~T}_{n}(x) t^{n}=\frac{1-t x}{1-2 t x+t^{2}}
$$

Hence

$$
\sum_{n \geq 1} \mathrm{~T}_{n}(x) \frac{t^{n}}{n}=\log \left(\frac{1}{\sqrt{1-2 t x+t^{2}}}\right)
$$

and therefore

$$
\sum_{n \geq 1} \widetilde{\mathrm{~T}}_{n}(x) \frac{t^{n}}{n}=\log \left(\frac{1}{1-t x+t^{2}}\right)
$$

Thus, for integer k, the power series expansion with respect to the variable t of

$$
\exp \left(\sum_{n \geq 1} \widetilde{\mathrm{~T}}_{n}(k) \frac{t^{n}}{n}\right)=\frac{1}{1-k t+t^{2}}
$$

has integer coefficients. It follows from Carlitz's result that the Gauss congruences (4) hold for the sequence $\left\{\widetilde{\mathrm{T}}_{n}(k): n \geq 1\right\}$. Congruence (3) is simply the particular case $m=1$.

An immediate consequence of Proposition 1 is that the integer sequence $\left\{\widetilde{\mathrm{T}}_{p^{n}}(k): n \geq 1\right\}$ is a Cauchy sequence in the complete metric space of p-adic integers \mathbb{Z}_{p}. Denote the limit of this Cauchy sequence by $\alpha(k)$ (we suppress the dependence of $\alpha(k)$ on the prime p);

$$
\alpha(k)=\text { limit_ }\{n \rightarrow \infty\} \widetilde{\mathrm{T}}_{p^{n}}(k) .
$$

It follows from Proposition 1 that for $n \geq 1$,

$$
\begin{aligned}
\widetilde{\mathrm{T}}_{p^{n}}(k) & \equiv \widetilde{\mathrm{T}}_{p}(k)(\bmod p) \\
& \equiv k(\bmod p)
\end{aligned}
$$

by (2). Letting $n \rightarrow \infty$ yields

$$
\begin{equation*}
\alpha(k) \equiv k(\bmod p) \tag{5}
\end{equation*}
$$

Proposition 2. For p an odd prime, the polynomial $\widetilde{\mathrm{T}}_{p}(x)-x$ of degree p splits into linear factors over \mathbb{Z}_{p} :

$$
\begin{equation*}
\widetilde{\mathrm{T}}_{p}(x)-x=\prod_{k=0}^{p-1}(x-\alpha(k)) \tag{6}
\end{equation*}
$$

Proof. The Chebyshev polynomials satisfy the composition identity [Rivlin]

$$
\mathrm{T}_{n}\left(\mathrm{~T}_{m}(x)\right)=\mathrm{T}_{n m}(x)
$$

One easily checks that the scaled Chebyshev polynomials also satisfy the same composition identity

$$
\widetilde{\mathrm{T}}_{n}\left(\widetilde{\mathrm{~T}}_{m}(x)\right)=\widetilde{\mathrm{T}}_{n m}(x)
$$

In particular, for odd prime p and integer k,

$$
\begin{equation*}
\widetilde{\mathrm{T}}_{p}\left(\widetilde{\mathrm{~T}}_{p^{n}}(k)\right)=\widetilde{\mathrm{T}}_{p^{n+1}}(k) . \tag{7}
\end{equation*}
$$

Let $n \rightarrow \infty$ in (7). Since polynomials are continuous functions on \mathbb{Z}_{p} we obtain

$$
\begin{equation*}
\widetilde{\mathrm{T}}_{p}(\alpha(k))=\alpha(k) \tag{8}
\end{equation*}
$$

Thus each p-adic integer $\alpha(k), k \in \mathbb{Z}$, is a root of $\widetilde{\mathrm{T}}_{p}(x)-x$. Now by (5), the p-adic integers $\alpha(0), \alpha(1), \ldots, \alpha(p-1)$ are distinct. We conclude that the polynomial $\widetilde{\mathrm{T}}_{p}(x)-x$ of degree p splits into linear factors over \mathbb{Z}_{p} as

$$
\begin{equation*}
\widetilde{\mathrm{T}}_{p}(x)-x=\prod_{k=0}^{p-1}(x-\alpha(k)) . \tag{9}
\end{equation*}
$$

Using this result we can use the Chebyshev polynomials to find some p-adic square roots.

p-adic square roots of 2 .

Let p be a prime with $p \equiv 1$ or $7(\bmod 8)$ (these are precisely the odd primes p such that $x^{2}-2=0$ has a solution mod p : see A001132). Then $x^{2}-2$ divides the polynomial $\widetilde{\mathrm{T}}_{p}(x)-x$ in the ring $\mathbb{Z}[x]$.

Proof. Observe first that $\widetilde{\mathrm{T}}_{p}(\sqrt{2})=\sqrt{2}$. This easily follows from the fact that $\mathrm{T}_{n}\left(\frac{\sqrt{2}}{2}\right)=\mathrm{T}_{n}\left(\cos \left(\frac{\pi}{4}\right)\right)=\cos \left(\frac{n \pi}{4}\right)$ by a well-known property of Chebyshev polynomials. Since $\widetilde{\mathrm{T}}_{p}(x)-x$ is a monic polynomial of degree $p \geq 3$ we can find an integral polynomial $m(x)$ and integers a and b such that $\widetilde{\mathrm{T}}_{p}(x)-x=m(x)\left(x^{2}-2\right)+a x+b$. Setting $x=\sqrt{2}$ yields $a \sqrt{2}+b=0$ and hence $a=b=0$. Thus $x^{2}-2$ is a factor of the polynomial $\mathrm{T}_{p}(x)-x$ in $\mathbb{Z}[x]$.

For example, in the case $p=7$, the polynomial $\widetilde{T}_{7}(x)-x$ factorises in $\mathbb{Z}[x]$ as $x\left(x^{2}-1\right)\left(x^{2}-2\right)\left(x^{2}-4\right)$ leading to the factorisation of $x^{2}-2$ in the ring $\mathbb{Z}_{7}[x]$ as

$$
x^{2}-2=(x-\alpha(3))(x-\alpha(4)),
$$

where $\alpha(k)=$ limit_ $\{n \rightarrow \infty\} \mathrm{L}_{7^{n}}(k)$. The 7 -adic integers $\alpha(3)$ and $\alpha(4)$ are recorded in the OEIS as A051277 and A290558.

In addition, we have the factorisations in $\mathbb{Z}_{7}[x]$ of the quadratics

$$
x^{2}-1=(x-\alpha(1))(x-\alpha(6))
$$

and

$$
x^{2}-4=(x-\alpha(2))(x-\alpha(5)) .
$$

from which we find that $\alpha(1)=1$ and $\alpha(6)=-1$ in the ring of 7 -adic integers \mathbb{Z}_{7} and $\alpha(2)=2$ and $\alpha(5)=-2$ in \mathbb{Z}_{7}.

p-adic square roots of 3 .

Let p be a prime with $p \equiv 1$ or $11 \bmod$ (12). See A097933. Then $x^{2}-3$ divides the polynomial $\widetilde{\mathrm{T}}_{p}(x)-x$ in the ring $\mathbb{Z}[x]$.

Proof. The proof is exactly similar to that given above. In order to show that $\widetilde{\mathrm{T}}_{p}(\sqrt{3})=\sqrt{3}$ we use the fact that $\mathrm{T}_{n}\left(\frac{\sqrt{3}}{2}\right)=\mathrm{T}_{n}\left(\cos \left(\frac{\pi}{6}\right)\right)=$ $\cos \left(\frac{n \pi}{6}\right)$.

Thus, for prime p of the form $12 k \pm 1$, the quadratic $x^{2}-3$ factors over \mathbb{Z}_{p} as $(x-\alpha(k))(x-\alpha(p-k))$, where now $0 \leq k \leq p-1$ satisfies $k^{2}-3 \equiv$ $0(\bmod p)$. For example, in the case $p=13$, the polynomial $x^{2}-3$ factors in the ring $\mathbb{Z}_{13}[x]$ as

$$
x^{2}-3=(x-\alpha(4))(x-\alpha(9))
$$

where $\alpha(k)=$ limit_ $\{n \rightarrow \infty\} \widetilde{\mathrm{T}}_{13^{n}}(k)$. The 13-adic integers $\alpha(4)$ and $\alpha(9)$ are recorded in the OEIS as A322087 and A322088.

We finish with a conjecture: for positive integer k, the sequence of polynomials $\left\{\widetilde{\mathrm{T}}_{k^{n}}(x)-x: n \geq 1\right\}$ is a divisibility sequence; that is, if n divides m then $\widetilde{\mathrm{T}}_{k^{n}}(x)-x$ divides $\widetilde{\mathrm{T}}_{k^{m}}(x)-x$ in the polynomial ring $\mathbb{Z}[x]$.

References

Carlitz, Note on a paper of Dieudonné, Proc. Amer. Math. Soc. 9 (1958), 32-33.

Rivlin, T.J., Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, (1990). Wiley, New York.

