login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A335005 Decimal expansion of Pi^2/(12*zeta(3)). 0
6, 8, 4, 2, 1, 6, 3, 8, 8, 8, 1, 0, 1, 0, 2, 9, 3, 7, 8, 6, 8, 3, 8, 2, 9, 2, 6, 9, 9, 2, 3, 9, 5, 9, 7, 0, 5, 6, 5, 4, 0, 6, 9, 5, 7, 3, 2, 6, 2, 0, 6, 9, 6, 1, 0, 3, 8, 6, 7, 6, 5, 9, 6, 3, 8, 4, 1, 7, 2, 4, 8, 9, 8, 9, 3, 8, 0, 0, 9, 7, 1, 1, 4, 1, 1, 0, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..86.

Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Mathematische Zeitschrift, Vol. 74, No. 1 (1960), pp. 66-80.

R. Sitaramachandrarao and D. Suryanarayana, On Sigma_{n<=x} sigma*(n) and Sigma_{n<=x} phi*(n), Proceedings of the American Mathematical Society, Vol. 41, No. 1 (1973), pp. 61-66.

FORMULA

Equals lim_{k->oo} A064609(k)/k^2, where A064609(k) is the partial sums of A034448, the sum of unitary divisors from 1 to k.

Equals zeta(2)/(2*zeta(3)) = A013661/(2*A002117) = A072691/A002117 = 1/(2*A253905).

EXAMPLE

0.68421638881010293786838292699239597056540695732620...

MATHEMATICA

RealDigits[Pi^2/12/Zeta[3], 10, 100][[1]]

PROG

(PARI) Pi^2/(12*zeta(3)) \\ Michel Marcus, May 19 2020

CROSSREFS

Cf. A002117(zeta(3)), A013661 (zeta(2)), A034448, A064609, A072691 (Pi^2/12), A253905 (zeta(3)/zeta(2)).

Sequence in context: A255728 A272488 A100608 * A321075 A234846 A244054

Adjacent sequences:  A335002 A335003 A335004 * A335006 A335007 A335008

KEYWORD

nonn,cons

AUTHOR

Amiram Eldar, May 19 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 1 07:45 EDT 2021. Contains 346384 sequences. (Running on oeis4.)