login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335007
Decimal expansion of 2*(gamma - zeta'(2)/zeta(2)) - 1, where gamma is the Euler-Mascheroni constant.
0
1, 2, 9, 4, 3, 5, 3, 3, 1, 5, 9, 9, 2, 1, 3, 1, 3, 3, 4, 0, 1, 2, 7, 5, 2, 9, 0, 0, 2, 0, 4, 2, 6, 4, 8, 6, 6, 8, 9, 1, 2, 8, 3, 2, 3, 3, 4, 9, 3, 7, 0, 9, 1, 5, 6, 7, 2, 7, 9, 2, 9, 1, 9, 0, 6, 4, 5, 5, 7, 0, 0, 0, 8, 2, 8, 8, 8, 1, 0, 5, 5, 5, 4, 4, 9, 6, 2
OFFSET
1,2
LINKS
Eckford Cohen, The number of unitary divisors of an integer, The American Mathematical Monthly, Vol. 67, No. 9 (1960), pp. 879-880.
FORMULA
Equals lim_{k->oo} ((zeta(2)/k)*A064608(k) - log(k)) where A064608 is the partial sums of the number of unitary divisors (A034444).
Equals 2*A001620 + 2*A073002/A013661 - 1 = 2*A335006 - 1.
EXAMPLE
1.2943533159921313340127529002042648668912832334937...
MATHEMATICA
RealDigits[2*EulerGamma - 2*Zeta'[2]/Zeta[2] - 1, 10, 100][[1]]
PROG
(PARI) 2*Euler - 2*zeta'(2)/zeta(2) - 1 \\ Michel Marcus, May 19 2020
CROSSREFS
Cf. A001620 (gamma), A013661 (zeta(2)), A034444, A064608, A073002 (-zeta'(2)), A147533, A335006.
Sequence in context: A011067 A135008 A200014 * A248968 A097881 A019758
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, May 19 2020
STATUS
approved