login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of 2*(gamma - zeta'(2)/zeta(2)) - 1, where gamma is the Euler-Mascheroni constant.
0

%I #7 May 19 2020 19:16:30

%S 1,2,9,4,3,5,3,3,1,5,9,9,2,1,3,1,3,3,4,0,1,2,7,5,2,9,0,0,2,0,4,2,6,4,

%T 8,6,6,8,9,1,2,8,3,2,3,3,4,9,3,7,0,9,1,5,6,7,2,7,9,2,9,1,9,0,6,4,5,5,

%U 7,0,0,0,8,2,8,8,8,1,0,5,5,5,4,4,9,6,2

%N Decimal expansion of 2*(gamma - zeta'(2)/zeta(2)) - 1, where gamma is the Euler-Mascheroni constant.

%H Eckford Cohen, <a href="http://www.jstor.org/stable/2309455">The number of unitary divisors of an integer</a>, The American Mathematical Monthly, Vol. 67, No. 9 (1960), pp. 879-880.

%F Equals lim_{k->oo} ((zeta(2)/k)*A064608(k) - log(k)) where A064608 is the partial sums of the number of unitary divisors (A034444).

%F Equals 2*A001620 + 2*A073002/A013661 - 1 = 2*A335006 - 1.

%e 1.2943533159921313340127529002042648668912832334937...

%t RealDigits[2*EulerGamma - 2*Zeta'[2]/Zeta[2] - 1, 10, 100][[1]]

%o (PARI) 2*Euler - 2*zeta'(2)/zeta(2) - 1 \\ _Michel Marcus_, May 19 2020

%Y Cf. A001620 (gamma), A013661 (zeta(2)), A034444, A064608, A073002 (-zeta'(2)), A147533, A335006.

%K nonn,cons

%O 1,2

%A _Amiram Eldar_, May 19 2020