The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A016850 a(n) = (5*n)^2. 9
 0, 25, 100, 225, 400, 625, 900, 1225, 1600, 2025, 2500, 3025, 3600, 4225, 4900, 5625, 6400, 7225, 8100, 9025, 10000, 11025, 12100, 13225, 14400, 15625, 16900, 18225, 19600, 21025, 22500, 24025, 25600, 27225, 28900, 30625, 32400, 34225, 36100, 38025, 40000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS If we define C(n) = (5*n)^2 (n > 0), the sequence is the first "square-sequence" such that for every n there exists p such that C(n) = C(p) + C(p+n). We observe in fact that p = 3n because 25 = 3^2 + 4^2. The sequence without 0 is linked with the first nontrivial solution (trivial: n^2 = 0^2 + n^2) of the equation X^2 = 2Y^2 + 2n^2 where X = 2*k and Y = 2*p + n which is equivalent to k^2 = p^2 + (p+n)^2 for n given. The second such "square-sequence" is (29*n)^2 (n > 0) because 29^2 = 20^2 + 21^2 and with this relation we obtain (29*n)^2 = (20*n)^2 + (20n+n)^2. - Richard Choulet, Dec 23 2007 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..800 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = 25*n^2 = 25*A000290(n) = 5*A033429(n). - Omar E. Pol, Jul 03 2014 From Amiram Eldar, Jan 25 2021: (Start) Sum_{n>=1} 1/a(n) = Pi^2/150. Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/300. Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/5)/(Pi/5). Product_{n>=1} (1 - 1/a(n)) = sin(Pi/5)/(Pi/5) = 5*sqrt((5-sqrt(5))/2)/(2*Pi). (End) a(n) = Sum_{i=0..n-1} A053742(i). - John Elias, Jun 30 2021 MATHEMATICA (5Range[0, 31])^2 (* Alonso del Arte, Oct 08 2017 *) PROG (MAGMA) [(5*n)^2: n in [0..50]]; // Vincenzo Librandi, Apr 26 2011 (PARI) a(n)=(5*n)^2 \\ Charles R Greathouse IV, Jun 17 2017 CROSSREFS Cf. A053742 (first differences). Similar sequences listed in A244630. Sequence in context: A335717 A198385 A134422 * A309779 A221274 A042220 Adjacent sequences:  A016847 A016848 A016849 * A016851 A016852 A016853 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 23:00 EDT 2022. Contains 353993 sequences. (Running on oeis4.)