login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309779
Squares that can be expressed as the sum of two positive squares but not as the sum of three positive squares.
2
25, 100, 400, 1600, 6400, 25600, 102400, 409600, 1638400, 6553600, 26214400, 104857600, 419430400, 1677721600, 6710886400, 26843545600, 107374182400, 429496729600, 1717986918400, 6871947673600, 27487790694400, 109951162777600, 439804651110400, 1759218604441600
OFFSET
1,1
COMMENTS
This sequence comes from the study of A309778, exactly, A309778(n) = 2 iff n^2 belongs to this sequence here.
According to Draxl link, a(n) is a term of this sequence iff a(n) = 5^2 * 4^(n-1) with n >= 1.
This sequence is a subsequence of A219222 whose terms are all of the form b_0 * 4^k with b_0 in A051952, hence, the only primitive term of this sequence here is 25.
LINKS
H.-P. Baltes, Peter K. J. Draxl, and Eberhard R. Hilf, Quadratsummen und gewisse Randwertprobleme der Mathematischen Physik, Publications of the Small Systems Group Oldenburg, preprint, 1973.
H.-P. Baltes, Peter K. J. Draxl, and Eberhard R. Hilf, Quadratsummen und gewisse Randwertprobleme der Mathematischen Physik, Journ. Reine Angewandte Mathematik, Vol. 268/269, 1974, 410-417.
P. K. J. Draxl, Sommes de deux carrés qui ne sont pas sommes de trois carrés., Mémoires de la SMF, tome 37 (1974), p. 53-53.
FORMULA
a(n) = 5^2 * 4^(n-1) with n >= 1.
a(n) = 4*a(n-1) for n > 1. G.f.: 25*x/(1 - 4*x). - Chai Wah Wu, Aug 29 2019
a(n) = 25 * A000302(n-1). - Alois P. Heinz, Aug 29 2019
E.g.f.: 25*(exp(4*x) - 1)/4. - Stefano Spezia, Oct 28 2023
EXAMPLE
25 = 5^2 = 3^2 + 4^2,
100 = 10^2 = 6^2 + 8^2,
5^2 * 4^(n-1) = (5 * 2^(n-1))^2 = (3 * 2^(n-1))^2 + (4 * 2^(n-1))^2, but these terms are not the sum of three positive squares.
MATHEMATICA
Array[25*4^(# - 1) &, 24] (* Michael De Vlieger, Aug 19 2019 *)
PROG
(PARI) a(n) = 25 * 4^(n-1); \\ Jinyuan Wang, Aug 18 2019
CROSSREFS
Intersection of A000290 and A219222.
Sequence in context: A198385 A134422 A016850 * A356533 A221274 A042220
KEYWORD
nonn,easy
AUTHOR
Bernard Schott, Aug 17 2019
STATUS
approved