login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219222
Numbers that can be expressed as the sum of 2 positive squares but not as the sum of 3 positive squares.
2
2, 5, 8, 10, 13, 20, 25, 32, 37, 40, 52, 58, 80, 85, 100, 128, 130, 148, 160, 208, 232, 320, 340, 400, 512, 520, 592, 640, 832, 928, 1280, 1360, 1600, 2048, 2080, 2368, 2560, 3328, 3712, 5120, 5440, 6400, 8192, 8320, 9472, 10240, 13312, 14848, 20480, 21760
OFFSET
1,1
COMMENTS
Among these numbers a(n), some of them are not divisible by 4: 2, 5, 10, 13, 25, 37, 58, 85, 130. All members of the sequence can be expressed as a(n) = 4^k*a0, with a0 taken in the set described above, that is A051952 except 1.
Subsequence of A000549. - Chai Wah Wu, Feb 05 2016
LINKS
Donovan Johnson, Table of n, a(n) for n = 1..120 (terms <= 10^9)
P. K. J. Draxl, Sommes de deux carrés qui ne sont pas sommes de trois carrés., Mémoires de la SMF, tome 37 (1974), p. 53-53.
FORMULA
Empirical g.f.: -x*(2*x^16 +28*x^15 +20*x^14 +33*x^13 +40*x^12 +26*x^11 +32*x^10 +32*x^9 +37*x^8 +32*x^7 +25*x^6 +20*x^5 +13*x^4 +10*x^3 +8*x^2 +5*x +2) / (4*x^9 -1). - Colin Barker, Sep 23 2014
PROG
(Python)
limit = 21760
squares_lst = [i*i for i in range(1, int(limit**0.5)+2) if i*i <= limit]
squares_set = set(squares_lst)
def sum2squares(n):
for s in squares_lst:
if n - s in squares_set: return True
if n - s < 0: return False
alst = []
for m in range(2, limit+1):
if sum2squares(m):
sum3 = False
for s in squares_lst:
if sum2squares(m - s): sum3 = True; break
if m - s < 0: break
if not sum3: alst.append(m)
print(alst) # Michael S. Branicky, Feb 05 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Nov 16 2012
STATUS
approved