OFFSET
1,1
COMMENTS
Among these numbers a(n), some of them are not divisible by 4: 2, 5, 10, 13, 25, 37, 58, 85, 130. All members of the sequence can be expressed as a(n) = 4^k*a0, with a0 taken in the set described above, that is A051952 except 1.
Subsequence of A000549. - Chai Wah Wu, Feb 05 2016
LINKS
Donovan Johnson, Table of n, a(n) for n = 1..120 (terms <= 10^9)
P. K. J. Draxl, Sommes de deux carrés qui ne sont pas sommes de trois carrés., Mémoires de la SMF, tome 37 (1974), p. 53-53.
FORMULA
Empirical g.f.: -x*(2*x^16 +28*x^15 +20*x^14 +33*x^13 +40*x^12 +26*x^11 +32*x^10 +32*x^9 +37*x^8 +32*x^7 +25*x^6 +20*x^5 +13*x^4 +10*x^3 +8*x^2 +5*x +2) / (4*x^9 -1). - Colin Barker, Sep 23 2014
PROG
(Python)
limit = 21760
squares_lst = [i*i for i in range(1, int(limit**0.5)+2) if i*i <= limit]
squares_set = set(squares_lst)
def sum2squares(n):
for s in squares_lst:
if n - s in squares_set: return True
if n - s < 0: return False
alst = []
for m in range(2, limit+1):
if sum2squares(m):
sum3 = False
for s in squares_lst:
if sum2squares(m - s): sum3 = True; break
if m - s < 0: break
if not sum3: alst.append(m)
print(alst) # Michael S. Branicky, Feb 05 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Nov 16 2012
STATUS
approved