OFFSET
0,4
COMMENTS
a(n) = 1 occurs at n = 2^k for nonnegative integers k.
LINKS
Rémy Sigrist, Table of n, a(n) for n = 0..16384
FORMULA
From Bernard Schott, Sep 22 2019: (Start)
a(2^k + 1) = 2 for k >= 1 where 2^k+1 = 1000..0001_2.
a(2^k - 1) = 2^(k-1) for k >= 2 where 2^k-1 = 111..111_2.
a((4^k-1)/3) = 2^(2*k-3) for k >= 2 where (4^k-1)/3 = 10101..0101_2.
(End)
EXAMPLE
For n=5 the triangle is
1 0 1
1 1
2
so a(5)=2.
For n=14 we get
1 1 1 0
2 2 1
4 3
7
so a(14)=7.
For n=26=11010_2; (n1+n2, n2+n3, n3+n4, n4+n5) = 2111; (n1'+n2', n2'+n3', n3'+n4') = 322; (n1''+n2'', n2''+n3'') = 54; (n1'''+n2''') = 9; a(26)= 9.
PROG
(PARI) a(n) = my (b=binary(n)); sum(k=1, #b, b[k]*binomial(#b-1, k-1)) \\ Rémy Sigrist, Aug 20 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Cameron Musard, Aug 16 2019
EXTENSIONS
Edited by N. J. A. Sloane, Sep 21 2019
Data corrected by Rémy Sigrist, Sep 22 2019
STATUS
approved