login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356533
a(n) = sigma_2(n)^2.
5
1, 25, 100, 441, 676, 2500, 2500, 7225, 8281, 16900, 14884, 44100, 28900, 62500, 67600, 116281, 84100, 207025, 131044, 298116, 250000, 372100, 280900, 722500, 423801, 722500, 672400, 1102500, 708964, 1690000, 925444, 1863225, 1488400, 2102500, 1690000, 3651921
OFFSET
1,2
LINKS
Ramanujan's Papers, Some formulas in the analytic theory of numbers, Messenger of Mathematics, XLV, 1916, 81-84, Formula (15), a=b=2.
FORMULA
Dirichlet g.f.: zeta(s) * zeta(s-2)^2 * zeta(s-4) / zeta(2*s-4).
Multiplicative with a(p^e) = ((p^(2*e+2)-1)/(p^2-1))^2. - Amiram Eldar, Aug 11 2022
a(n) = A001157(n)^2. - R. J. Mathar, Aug 18 2022
MATHEMATICA
Table[DivisorSigma[2, n]^2, {n, 1, 40}]
PROG
(PARI) a(n) = sigma(n, 2)^2; \\ Michel Marcus, Aug 11 2022
CROSSREFS
Cf. A001157, A127473, A035116, A072861, A356535 (partial sums).
Sequence in context: A134422 A016850 A309779 * A221274 A042220 A114254
KEYWORD
nonn,mult
AUTHOR
Vaclav Kotesovec, Aug 11 2022
STATUS
approved