login
A356536
a(n) = Sum_{k=1..n} sigma_3(k)^2.
3
1, 82, 866, 6195, 22071, 85575, 203911, 546136, 1119185, 2405141, 4179365, 8357301, 13188505, 22773721, 35220505, 57132266, 81279662, 127696631, 174756231, 259359435, 352134859, 495847003, 643907227, 912211627, 1160305628, 1551633152, 1969426752, 2600039296
OFFSET
1,2
COMMENTS
Partial sums of A356534.
In general, for m>0, Sum_{k=1..n} sigma_m(k)^2 ~ zeta(2*m+1) * zeta(m+1)^2 * n^(2*m+1) / ((2*m+1) * zeta(2*m+2)).
LINKS
FORMULA
a(n) ~ zeta(7) * n^7 / 6.
MATHEMATICA
Table[Sum[DivisorSigma[3, k]^2, {k, 1, n}], {n, 1, 40}]
Accumulate[DivisorSigma[3, Range[40]]^2] (* This program is much more efficient than the first program above. *) (* Harvey P. Dale, Feb 27 2023 *)
PROG
(PARI) a(n) = sum(k=1, n, sigma(k, 3)^2); \\ Michel Marcus, Aug 11 2022
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 11 2022
STATUS
approved