OFFSET
1,2
COMMENTS
Partial sums of A356534.
In general, for m>0, Sum_{k=1..n} sigma_m(k)^2 ~ zeta(2*m+1) * zeta(m+1)^2 * n^(2*m+1) / ((2*m+1) * zeta(2*m+2)).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
a(n) ~ zeta(7) * n^7 / 6.
MATHEMATICA
Table[Sum[DivisorSigma[3, k]^2, {k, 1, n}], {n, 1, 40}]
Accumulate[DivisorSigma[3, Range[40]]^2] (* This program is much more efficient than the first program above. *) (* Harvey P. Dale, Feb 27 2023 *)
PROG
(PARI) a(n) = sum(k=1, n, sigma(k, 3)^2); \\ Michel Marcus, Aug 11 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 11 2022
STATUS
approved