login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A282159
T(n,k)=Number of nXk 0..2 arrays with no element unequal to more than four of its king-move neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
5
0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 82, 884, 82, 0, 0, 1599, 37560, 37560, 1599, 0, 0, 20256, 449234, 680348, 449234, 20256, 0, 0, 217361, 4930949, 12543514, 12543514, 4930949, 217361, 0, 0, 2130206, 45129433, 171142988, 268737946, 171142988, 45129433
OFFSET
1,12
COMMENTS
Table starts
.0.........0...........0............0.............0.............0.............0
.0.........0...........1...........82..........1599.........20256........217361
.0.........1.........884........37560........449234.......4930949......45129433
.0........82.......37560.......680348......12543514.....171142988....2215087379
.0......1599......449234.....12543514.....268737946....4498309134...70977696789
.0.....20256.....4930949....171142988....4498309134...94477496914.1871302754948
.0....217361....45129433...2215087379...70977696789.1871302754948
.0...2130206...390165523..26310131648.1027384373753
.0..19642211..3162500791.298319340360
.0.173364188.24713889390
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: [order 12]
k=3: [order 45] for n>49
EXAMPLE
Some solutions for n=3 k=4
..0..1..1..2. .0..0..0..1. .0..1..1..2. .0..1..2..2. .0..1..2..0
..1..1..2..1. .1..2..0..0. .1..0..0..0. .1..2..0..2. .0..2..1..2
..2..0..0..1. .0..2..2..0. .1..0..1..0. .1..1..0..1. .1..0..0..1
CROSSREFS
Sequence in context: A173356 A083386 A356536 * A263812 A160154 A093282
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 07 2017
STATUS
approved