%I #4 Feb 07 2017 08:16:37
%S 0,0,0,0,0,0,0,1,1,0,0,82,884,82,0,0,1599,37560,37560,1599,0,0,20256,
%T 449234,680348,449234,20256,0,0,217361,4930949,12543514,12543514,
%U 4930949,217361,0,0,2130206,45129433,171142988,268737946,171142988,45129433
%N T(n,k)=Number of nXk 0..2 arrays with no element unequal to more than four of its king-move neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
%C Table starts
%C .0.........0...........0............0.............0.............0.............0
%C .0.........0...........1...........82..........1599.........20256........217361
%C .0.........1.........884........37560........449234.......4930949......45129433
%C .0........82.......37560.......680348......12543514.....171142988....2215087379
%C .0......1599......449234.....12543514.....268737946....4498309134...70977696789
%C .0.....20256.....4930949....171142988....4498309134...94477496914.1871302754948
%C .0....217361....45129433...2215087379...70977696789.1871302754948
%C .0...2130206...390165523..26310131648.1027384373753
%C .0..19642211..3162500791.298319340360
%C .0.173364188.24713889390
%H R. H. Hardin, <a href="/A282159/b282159.txt">Table of n, a(n) for n = 1..83</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1)
%F k=2: [order 12]
%F k=3: [order 45] for n>49
%e Some solutions for n=3 k=4
%e ..0..1..1..2. .0..0..0..1. .0..1..1..2. .0..1..2..2. .0..1..2..0
%e ..1..1..2..1. .1..2..0..0. .1..0..0..0. .1..2..0..2. .0..2..1..2
%e ..2..0..0..1. .0..2..2..0. .1..0..1..0. .1..1..0..1. .1..0..0..1
%K nonn,tabl
%O 1,12
%A _R. H. Hardin_, Feb 07 2017