login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282160
Least k > 1 such that k*n is not a totient number.
2
3, 7, 3, 17, 3, 15, 2, 19, 3, 5, 3, 43, 2, 7, 3, 19, 2, 5, 2, 17, 3, 7, 3, 167, 2, 7, 3, 11, 3, 3, 2, 19, 3, 2, 3, 67, 2, 2, 3, 17, 3, 17, 2, 7, 2, 5, 2, 211, 2, 7, 3, 7, 3, 11, 3, 13, 2, 3, 2, 139, 2, 2, 3, 31, 3, 9, 2, 5, 3, 5, 2, 109, 2, 5, 3, 2, 2, 3, 2, 85, 3, 3, 3, 61
OFFSET
1,1
COMMENTS
First occurrence of odd k or zero if impossible: 0, 1, 10, 2, 66, 28, 56, 6, 4, 8, 5244, 460, 272, 0, 232, 64, 7788, 4180, 300, 348, 328, 12, etc. - Robert G. Wilson v, Feb 09 2017
FORMULA
a(A079695(n)) = 2. - Michel Marcus, Feb 08 2017
EXAMPLE
a(14) = 7 because 7 * 14 = 98 is not a totient number and 7 is the least number that is greater than 1 with this property.
MATHEMATICA
TotientQ[m_] := Select[ Range[m +1, 2m*Product[(1 - 1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1] != {}; (* after Jean-François Alcover, May 23 2011 in A002202 *) f[n_] := Block[{k = 2}, While[ TotientQ[k*n], k++]; k]; Array[f, 84] (* Robert G. Wilson v, Feb 09 2017 *)
PROG
(PARI) a(n) = my(k = 2); while (istotient(k*n), k++); k;
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Feb 07 2017
STATUS
approved