login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282161
Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x and (12*x)^2 + (5*y-10*z)^2 both squares, where x,y,z are nonnegative integers and w is a positive integer.
1
1, 3, 2, 2, 5, 4, 2, 2, 4, 6, 4, 3, 4, 6, 3, 1, 9, 7, 5, 6, 7, 7, 1, 4, 8, 11, 7, 1, 11, 10, 2, 3, 8, 9, 6, 9, 8, 11, 5, 5, 15, 7, 4, 5, 13, 9, 2, 2, 8, 15, 10, 8, 10, 17, 3, 7, 12, 4, 10, 4, 11, 16, 3, 2, 18, 16, 6, 9, 15, 11, 4, 6, 8, 16, 12, 3, 13, 13, 1, 5
OFFSET
1,2
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 16^k*m (k = 0,1,2,... and m = 1, 23, 28, 79, 119, 191, 223, 263, 463, 703, 860, 1052).
(ii) Any positive integer n can be written as x^2 + y^2 + z^2 + w^2 with x and (35*x)^2 + (12*y-24*z)^2 both squares, where x,y,z are nonnegative integers and w is a positive integer.
The author has proved that any nonnegative integer can be written as the sum of a fourth power and three squares.
See also A281976, A281977, A282013 and A282014 for similar conjectures.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017.
EXAMPLE
a(1) = 1 since 1 = 0^2 + 0^2 + 0^2 + 1^2 with 0 = 0^2 and (12*0)^2 + (5*0-10*0)^2 = 0^2.
a(23) = 1 since 23 = 1^2 + 3^2 + 2^2 + 3^2 with 1 = 1^2 and (12*1)^2 + (5*3-10*2)^2 = 13^2.
a(28) = 1 since 28 = 1^2 + 1^2 + 1^2 + 5^2 with 1 = 1^2 and (12*1)^2 + (5*1-10*1)^2 = 13^2.
a(79) = 1 since 79 = 1^2 + 5^2 + 2^2 + 7^2 with 1 = 1^2 and (12*1)^2 + (5*5-10*2)^2 = 13^2.
a(119) = 1 since 119 = 1^2 + 9^2 + 1^2 + 6^2 with 1 = 1^2 and (12*1)^2 + (5*9-10*1)^2 = 37^2.
a(191) = 1 since 191 = 9^2 + 5^2 + 7^2 + 6^2 with 9 = 3^2 and (12*9)^2 + (5*5-10*7)^2 = 117^2.
a(223) = 1 since 223 = 1^2 + 13^2 + 7^2 + 2^2 with 1 = 1^2 and (12*1)^2 + (5*13-10*7)^2 = 13^2.
a(263) = 1 since 263 = 9^2 + 13^2 + 2^2 + 3^2 with 9 = 3^2 and (12*9)^2 + (5*13-10*2)^2 = 117^2.
a(463) = 1 since 463 = 1^2 + 19^2 + 10^2 + 1^2 with 1 = 1^2 and (12*1)^2 + (5*19-10*10)^2 = 13^2.
a(703) = 1 since 703 = 1^2 + 13^2 + 7^2 + 22^2 with 1 = 1^2 and (12*1)^2 + (5*13-10*7)^2 = 13^2.
a(860) = 1 since 860 = 4^2 + 18^2 + 18^2 + 14^2 with 4 = 2^2 and (12*4)^2 + (5*18-10*18)^2 = 102^2.
a(1052) = 1 since 1052 = 4^2 + 30^2 + 6^2 + 10^2 with 4 = 2^2 and (12*4)^2 + (5*30-10*6)^2 = 102^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
Do[r=0; Do[If[SQ[n-x^4-y^2-z^2]&&SQ[144x^4+(5y-10z)^2], r=r+1], {x, 0, (n-1)^(1/4)}, {y, 0, Sqrt[n-1-x^4]}, {z, 0, Sqrt[n-1-x^4-y^2]}]; Print[n, " ", r]; Continue, {n, 1, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 07 2017
STATUS
approved