login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309045
Expansion of Product_{k>=0} (1 + x^(3^k) + x^(2*3^k) + x^(3^(k+1)))^(2^k).
1
1, 1, 1, 3, 2, 2, 5, 3, 3, 11, 8, 8, 19, 11, 11, 25, 14, 14, 41, 27, 27, 59, 32, 32, 70, 38, 38, 110, 72, 72, 158, 86, 86, 190, 104, 104, 289, 185, 185, 395, 210, 210, 455, 245, 245, 645, 400, 400, 829, 429, 429, 915, 486, 486, 1269, 783, 783, 1623, 840, 840, 1800, 960, 960, 2472
OFFSET
0,4
COMMENTS
The trisection equals the self-convolution of this sequence.
FORMULA
G.f.: Product_{k>=0} ((1 - x^(4*3^k))/(1 - x^(3^k)))^(2^k).
G.f. A(x) satisfies: A(x) = (1 + x + x^2 + x^3) * A(x^3)^2.
MATHEMATICA
nmax = 63; CoefficientList[Series[Product[(1 + x^(3^k) + x^(2 3^k) + x^(3^(k + 1)))^(2^k), {k, 0, Floor[Log[3, nmax]] + 1}], {x, 0, nmax}], x]
nmax = 63; A[_] = 1; Do[A[x_] = (1 + x + x^2 + x^3) A[x^3]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 09 2019
STATUS
approved