login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A309045 Expansion of Product_{k>=0} (1 + x^(3^k) + x^(2*3^k) + x^(3^(k+1)))^(2^k). 1
1, 1, 1, 3, 2, 2, 5, 3, 3, 11, 8, 8, 19, 11, 11, 25, 14, 14, 41, 27, 27, 59, 32, 32, 70, 38, 38, 110, 72, 72, 158, 86, 86, 190, 104, 104, 289, 185, 185, 395, 210, 210, 455, 245, 245, 645, 400, 400, 829, 429, 429, 915, 486, 486, 1269, 783, 783, 1623, 840, 840, 1800, 960, 960, 2472 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

The trisection equals the self-convolution of this sequence.

LINKS

Table of n, a(n) for n=0..63.

FORMULA

G.f.: Product_{k>=0} ((1 - x^(4*3^k))/(1 - x^(3^k)))^(2^k).

G.f. A(x) satisfies: A(x) = (1 + x + x^2 + x^3) * A(x^3)^2.

MATHEMATICA

nmax = 63; CoefficientList[Series[Product[(1 + x^(3^k) + x^(2 3^k) + x^(3^(k + 1)))^(2^k), {k, 0, Floor[Log[3, nmax]] + 1}], {x, 0, nmax}], x]

nmax = 63; A[_] = 1; Do[A[x_] = (1 + x + x^2 + x^3) A[x^3]^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

CROSSREFS

Cf. A054390, A237651, A309046.

Sequence in context: A092895 A151842 A076118 * A210956 A282161 A205675

Adjacent sequences:  A309042 A309043 A309044 * A309046 A309047 A309048

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Jul 09 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 04:58 EDT 2021. Contains 347577 sequences. (Running on oeis4.)