OFFSET
0,5
COMMENTS
Take a list of numbers (like 0,1,2,3,4,5,...) and then pair them up like this: (0,1)(1,2),(2,3),(3,4)... Then sum each pair, and insert the sum between the numbers, like this: (0,1,1), (1,3,2), (2,5,3), ... Finally, remove the parentheses: 0,1,1,1,3,2,2,5,3,...
This mirrors the pattern used to make a dragon curve fractal. You take two points, then find one to insert between them. In the next iteration, you take those three points and find two numbers to insert between them. (Rather than summing the two numbers, a different function is used to find a point relative to two other points.)
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1).
FORMULA
From R. J. Mathar, Jul 14 2009: (Start)
G.f.: x*(1+x)*(1+x^2)/((x-1)^2*(1+x+x^2)^2).
a(n) = 2*a(n-3) - a(n-6). (End)
Expansion of x * (1 - x^4) / ((1 - x) * (1 - x^3)^2) in powers of x. - Michael Somos, Aug 12 2009
Euler transform of length 4 sequence [ 1, 0, 2, -1]. - Michael Somos, Aug 12 2009
-a(n) = a(-1-n). - Michael Somos, Nov 11 2013
From Ridouane Oudra, Nov 23 2024: (Start)
a(n) = 5*n/6 + n^2/2 - n^3/3 + (2*n^2 - n - 3/2)*floor(n/3) - (3*n + 3/2)*floor(n/3)^2.
a(n) = t(n+2)*t(n+3) - t(n)*t(n+1), where t(n) = floor(n/3) = A002264(n).
EXAMPLE
G.f. = x + x^2 + x^3 + 3*x^4 + 2*x^5 + 2*x^6 + 5*x^7 + 3*x^8 + 3*x^9 + ... - Michael Somos, Aug 12 2009
MATHEMATICA
CoefficientList[Series[x (1 + x) (1 + x^2) / ((x - 1)^2 (1 + x + x^2)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Feb 14 2015 *)
PROG
(Python)
def pairup(x): return [x[i:i+2] for i in range(len(x)-1)]
def combine(vals): return sum(vals)
def expand(L, fn): return [(x[0], fn(x), x[1]) for x in pairup(L)]
L = list(range(20))
print(expand(L, combine))
(PARI) {a(n) = kronecker(9, n) + (n\3) * [1, 2, 1][n%3 + 1]} /* Michael Somos, Aug 12 2009 */
(Magma) I:=[0, 1, 1, 1, 3, 2]; [n le 6 select I[n] else 2*Self(n-3)-Self(n-6): n in [1..80]]; // Vincenzo Librandi, Feb 14 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Shane Geiger (shane.geiger(AT)gmail.com), Jul 14 2009
EXTENSIONS
More terms from Vincenzo Librandi, Feb 14 2015
STATUS
approved