The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A151843 a(0)=0; a(1)=0; a(2)=0; for n>=3 if n=2^i + j with 0<=j<2^i then a(n)=a(j) + a(j + 1) except we add 1 if j=2^i-1. 32
 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 1, 0, 1, 3, 3, 0, 0, 1, 1, 0, 1, 3, 2, 0, 1, 2, 1, 1, 4, 6, 4, 0, 0, 1, 1, 0, 1, 3, 2, 0, 1, 2, 1, 1, 4, 6, 3, 0, 1, 2, 1, 1, 4, 5, 2, 1, 3, 3, 2, 5, 10, 10, 5, 0, 0, 1, 1, 0, 1, 3, 2, 0, 1, 2, 1, 1, 4, 6, 3, 0, 1, 2, 1, 1, 4, 5, 2, 1, 3, 3, 2, 5, 10, 10, 4, 0, 1, 2, 1, 1, 4, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 FORMULA I would very much like a g.f. for this sequence! EXAMPLE From Omar E. Pol, Jul 17 2009: (Start) Triangle begins: 0; 0; 0,1; 0,0,1,2; 0,0,1,1,0,1,3,3; 0,0,1,1,0,1,3,2,0,1,2,1,1,4,6,4; ... MAPLE M:=520; f:=proc(r, s, a, b) local s1, n, i, j; global M; s1:=array(0..M+10); s1[0]:=r; s1[1]:=s; for n from 2 to M do i:=floor(log(n)/log(2)); j:=n-2^i; if (j=2^i-1) then s1[n]:=a*s1[j]+b*s1[j+1]+1 else s1[n]:=a*s1[j]+b*s1[j+1]; fi; od: [seq(s1[n], n=0..M)]; end; f(0, 0, 1, 1); MATHEMATICA M = 520; f[r_, s_, a_, b_] := Module[{s1, n, i, j} , s1[0] = r; s1[1] = s; For[n = 2, n <= M, n++, i = Floor[Log[2, n]]; j = n - 2^i; If[j == 2^i - 1, s1[n] = a*s1[j]+b*s1[j+1]+1, s1[n] = a*s1[j]+b*s1[j+1]]]; Table[s1[n], {n, 0, M}]]; f[0, 0, 1, 1] (* Jean-François Alcover, Mar 03 2014, after Maple *) CROSSREFS Cf. A151843-A151874. Sequence in context: A025922 A342322 A161369 * A276422 A323069 A325334 Adjacent sequences: A151840 A151841 A151842 * A151844 A151845 A151846 KEYWORD nonn,look AUTHOR N. J. A. Sloane, Jul 17 2009, Jul 19 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 3 22:24 EDT 2023. Contains 365872 sequences. (Running on oeis4.)