The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276422 Triangle read by rows: T(n,k) is the number of partitions of n for which the sum of its odd singletons is k (0<=k<=n). A singleton in a partition is a part that occurs exactly once. 4
 1, 0, 1, 2, 0, 0, 1, 1, 0, 1, 4, 0, 0, 0, 1, 2, 2, 0, 2, 0, 1, 8, 0, 0, 1, 1, 0, 1, 4, 4, 0, 4, 0, 2, 0, 1, 14, 0, 0, 2, 2, 1, 1, 0, 2, 9, 6, 0, 7, 0, 4, 0, 2, 0, 2, 24, 1, 0, 4, 3, 2, 2, 1, 3, 0, 2, 16, 10, 0, 12, 0, 8, 0, 4, 1, 3, 0, 2, 41, 1, 0, 7, 5, 4, 4, 2, 6, 1, 3, 0, 3, 28, 16, 0, 20, 0, 14, 0, 8, 2, 6, 1, 3, 0, 3 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS T(n,0) = A265256(n). T(n,n) = A000700(n). Sum(k*T(n,k), k>=0) = A276423(n). Sum(T(n,k), k>=0) = A000041(n). LINKS Alois P. Heinz, Rows n = 0..200, flattened FORMULA G.f.:  G(t,x) = Product(((1-x^{2j-1})(1+t^{2j-1}x^{2j-1}) + x^{4j-2})/(1-x^j), j=1..infinity). EXAMPLE Row 4 is 4, 0, 0, 0, 1 because in the partitions [1,1,1,1], [1,1,2], [2,2], [1,3], [4] the sums of the odd singletons are 0, 0, 0, 4, 0, respectively. Row 5 is 2, 2, 0, 2, 0, 1 because in the partitions [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5] the sums of the odd singletons are 0, 0, 1, 3, 3, 1, 5, respectively. Triangle starts: 1; 0,1; 2,0,0; 1,1,0,1; 4,0,0,0,1; 2,2,0,2,0,1. MAPLE g := Product(((1-x^(2*j-1))*(1+t^(2*j-1)*x^(2*j-1))+x^(4*j-2))/(1-x^j), j = 1 .. 100): gser := simplify(series(g, x = 0, 23)): for n from 0 to 20 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 20 do seq(coeff(P[n], t, i), i = 0 .. n) end do; # yields sequence in triangular form # second Maple program: b:= proc(n, i) option remember; expand(       `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*       `if`(j=1 and i::odd, x^i, 1), j=0..n/i))))     end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n\$2)): seq(T(n), n=0..14);  # Alois P. Heinz, Sep 14 2016 MATHEMATICA b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*If[j == 1 && OddQ[i], x^i, 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Oct 04 2016, after Alois P. Heinz *) CROSSREFS Cf. A000041, A000700, A265256, A276423, A276424, A276425. Sequence in context: A025922 A161369 A151843 * A323069 A325334 A280287 Adjacent sequences:  A276419 A276420 A276421 * A276423 A276424 A276425 KEYWORD nonn,tabl AUTHOR Emeric Deutsch, Sep 14 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 12:30 EDT 2020. Contains 337380 sequences. (Running on oeis4.)