login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276422
Triangle read by rows: T(n,k) is the number of partitions of n for which the sum of its odd singletons is k (0<=k<=n). A singleton in a partition is a part that occurs exactly once.
4
1, 0, 1, 2, 0, 0, 1, 1, 0, 1, 4, 0, 0, 0, 1, 2, 2, 0, 2, 0, 1, 8, 0, 0, 1, 1, 0, 1, 4, 4, 0, 4, 0, 2, 0, 1, 14, 0, 0, 2, 2, 1, 1, 0, 2, 9, 6, 0, 7, 0, 4, 0, 2, 0, 2, 24, 1, 0, 4, 3, 2, 2, 1, 3, 0, 2, 16, 10, 0, 12, 0, 8, 0, 4, 1, 3, 0, 2, 41, 1, 0, 7, 5, 4, 4, 2, 6, 1, 3, 0, 3, 28, 16, 0, 20, 0, 14, 0, 8, 2, 6, 1, 3, 0, 3
OFFSET
0,4
COMMENTS
T(n,0) = A265256(n).
T(n,n) = A000700(n).
Sum(k*T(n,k), k>=0) = A276423(n).
Sum(T(n,k), k>=0) = A000041(n).
LINKS
FORMULA
G.f.: G(t,x) = Product(((1-x^{2j-1})(1+t^{2j-1}x^{2j-1}) + x^{4j-2})/(1-x^j), j=1..infinity).
EXAMPLE
Row 4 is 4, 0, 0, 0, 1 because in the partitions [1,1,1,1], [1,1,2], [2,2], [1,3], [4] the sums of the odd singletons are 0, 0, 0, 4, 0, respectively.
Row 5 is 2, 2, 0, 2, 0, 1 because in the partitions [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5] the sums of the odd singletons are 0, 0, 1, 3, 3, 1, 5, respectively.
Triangle starts:
1;
0,1;
2,0,0;
1,1,0,1;
4,0,0,0,1;
2,2,0,2,0,1.
MAPLE
g := Product(((1-x^(2*j-1))*(1+t^(2*j-1)*x^(2*j-1))+x^(4*j-2))/(1-x^j), j = 1 .. 100): gser := simplify(series(g, x = 0, 23)): for n from 0 to 20 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 20 do seq(coeff(P[n], t, i), i = 0 .. n) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i) option remember; expand(
`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*
`if`(j=1 and i::odd, x^i, 1), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
seq(T(n), n=0..14); # Alois P. Heinz, Sep 14 2016
MATHEMATICA
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*If[j == 1 && OddQ[i], x^i, 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Oct 04 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Sep 14 2016
STATUS
approved