OFFSET
0,6
FORMULA
(Sum_{k = 0..n} T(n, k)) / A064538(n) = Bernoulli(n, 1).
EXAMPLE
p(n, x) = (Sum_{k = 0..n} T(n, k) x^k) / A064538(n).
[n] T(n, k) A064538(n)
---------------------------------------------------
[0] 1, [ 1]
[1] 0, 1, [ 2]
[2] 0, -1, 2, [ 6]
[3] 0, 0, -1, 1, [ 4]
[4] 0, 1, 1, -9, 6, [30]
[5] 0, 0, 1, 1, -4, 2, [12]
[6] 0, -1, -1, 6, 6, -15, 6, [42]
[7] 0, 0, -2, -2, 5, 5, -9, 3, [24]
[8] 0, 3, 3, -17, -17, 25, 25, -35, 10, [90]
[9] 0, 0, 3, 3, -7, -7, 7, 7, -8, 2. [20]
MAPLE
CoeffList := p -> [op(PolynomialTools:-CoefficientList(factor(p), x))]:
p := n -> add(binomial(n+1, k+1)*bernoulli(n-k, 1)*(x-1)^k, k=0..n)/(n+1):
seq(print(denom(p(n))*CoeffList(p(n))), n=0..9);
MATHEMATICA
CROSSREFS
KEYWORD
AUTHOR
Peter Luschny, Mar 09 2021
STATUS
approved