|
|
A276420
|
|
Number of palindromic compositions of n into prime parts.
|
|
2
|
|
|
1, 0, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 5, 6, 8, 7, 12, 14, 16, 17, 26, 27, 36, 40, 55, 56, 81, 88, 118, 124, 177, 189, 257, 275, 384, 404, 564, 605, 833, 880, 1233, 1314, 1813, 1929, 2685, 2850, 3956, 4215, 5845, 6203, 8629, 9185, 12731, 13531, 18807, 19994
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,7
|
|
LINKS
|
|
|
FORMULA
|
G.f.: g(z) = (1+F(z))/(1-F(z^2)), where F(z) = Sum_{p prime} z^p = z^2 + z^3 + z^5 + z^7 + ... .
|
|
EXAMPLE
|
a(9) = 2 because we have [2,5,2] and [3,3,3].
a(12) = 5 because we have [5,2,5], [2,3,2,3,2], [3,2,2,2,3], [3,3,3,3], and [2,2,2,2,2,2].
|
|
MAPLE
|
F := sum(z^ithprime(j), j=1..90): F2:=sum(z^(2*ithprime(j)), j=1..90): g:= (1+F)/(1-F2): gser:=series(g, z=0, 55): seq(coeff(gser, z, n), n=0..50);
# second Maple program:
a:= proc(n) option remember; `if`(n=0 or isprime(n), 1, 0)+
add(`if`(isprime(j), a(n-2*j), 0), j=1..n/2)
end:
|
|
MATHEMATICA
|
Table[Count[Flatten[Map[Permutations, Select[IntegerPartitions@ n, Times @@ Boole@ Map[PrimeQ, #] > 0 &]], 1], w_ /; Reverse@ w == w], {n, 0, 40}] (* Michael De Vlieger, Sep 02 2016 *)
a[n_] := a[n] = If[n == 0 || PrimeQ[n], 1, 0] +
Sum[If[PrimeQ[j], a[n - 2*j], 0], {j, 1, n/2}];
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|