login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008133
a(n) = floor(n/3)*floor((n+1)/3).
5
0, 0, 0, 1, 1, 2, 4, 4, 6, 9, 9, 12, 16, 16, 20, 25, 25, 30, 36, 36, 42, 49, 49, 56, 64, 64, 72, 81, 81, 90, 100, 100, 110, 121, 121, 132, 144, 144, 156, 169, 169, 182, 196, 196, 210, 225, 225, 240, 256, 256, 272, 289, 289, 306, 324, 324, 342, 361, 361, 380, 400, 400, 420, 441, 441, 462, 484, 484, 506
OFFSET
0,6
COMMENTS
Oblong numbers and squares are subsequences: a(A016789(n))=A002378(n); a(A008585(n))=a(A016777(n))=A000290(n). - Reinhard Zumkeller, Oct 09 2011
LINKS
V. Baltic, Applications of the finite state automata for counting restricted permutations and variations, Yugoslav Journal of Operations Research, 22 (2012), Number 2, 183-198 ; DOI: 10.2298/YJOR120211023B. - From N. J. A. Sloane, Jan 02 2013
FORMULA
Partial sums of A087509. a(n+1)=sum{j=0..n, sum{k=0..j, if (mod(jk, 3)=2, 1, 0) }}. - Paul Barry, Sep 14 2003
Empirical g.f.: -x^3*(x^2+1) / ((x-1)^3*(x^2+x+1)^2). - Colin Barker, Mar 31 2013
MATHEMATICA
Table[Floor[n/3]Floor[(n+1)/3], {n, 0, 100}] (* or *) LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {0, 0, 0, 1, 1, 2, 4}, 100] (* Harvey P. Dale, Sep 21 2024 *)
PROG
(Magma) [Floor(n/3)*Floor((n+1)/3): n in [0..60]]; // Vincenzo Librandi, Aug 20 2011
(Haskell)
a008133 n = a008133_list !! n
a008133_list = zipWith (*) (tail ts) ts where ts = map (`div` 3) [0..]
-- Reinhard Zumkeller, Oct 09 2011
(PARI) a(n) = floor(n/3)*floor((n+1)/3); /* Joerg Arndt, Mar 31 2013 */
CROSSREFS
Cf. A008217.
Sequence in context: A292671 A210948 A359678 * A237828 A362607 A340626
KEYWORD
nonn,easy
STATUS
approved