login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A008133
a(n) = floor(n/3)*floor((n+1)/3).
7
0, 0, 0, 1, 1, 2, 4, 4, 6, 9, 9, 12, 16, 16, 20, 25, 25, 30, 36, 36, 42, 49, 49, 56, 64, 64, 72, 81, 81, 90, 100, 100, 110, 121, 121, 132, 144, 144, 156, 169, 169, 182, 196, 196, 210, 225, 225, 240, 256, 256, 272, 289, 289, 306, 324, 324, 342, 361, 361, 380, 400, 400, 420, 441, 441, 462, 484, 484, 506
OFFSET
0,6
COMMENTS
Oblong numbers and squares are subsequences: a(A016789(n))=A002378(n); a(A008585(n))=a(A016777(n))=A000290(n). - Reinhard Zumkeller, Oct 09 2011
LINKS
V. Baltic, Applications of the finite state automata for counting restricted permutations and variations, Yugoslav Journal of Operations Research, 22 (2012), Number 2, 183-198 ; DOI: 10.2298/YJOR120211023B. - From N. J. A. Sloane, Jan 02 2013
FORMULA
Partial sums of A087509. a(n+1)=sum{j=0..n, sum{k=0..j, if (mod(jk, 3)=2, 1, 0) }}. - Paul Barry, Sep 14 2003
Empirical g.f.: -x^3*(x^2+1) / ((x-1)^3*(x^2+x+1)^2). - Colin Barker, Mar 31 2013
MATHEMATICA
Table[Floor[n/3]Floor[(n+1)/3], {n, 0, 100}] (* or *) LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {0, 0, 0, 1, 1, 2, 4}, 100] (* Harvey P. Dale, Sep 21 2024 *)
PROG
(Magma) [Floor(n/3)*Floor((n+1)/3): n in [0..60]]; // Vincenzo Librandi, Aug 20 2011
(Haskell)
a008133 n = a008133_list !! n
a008133_list = zipWith (*) (tail ts) ts where ts = map (`div` 3) [0..]
-- Reinhard Zumkeller, Oct 09 2011
(PARI) a(n) = floor(n/3)*floor((n+1)/3); /* Joerg Arndt, Mar 31 2013 */
CROSSREFS
Cf. A008217.
Sequence in context: A292671 A210948 A359678 * A237828 A362607 A340626
KEYWORD
nonn,easy
STATUS
approved