OFFSET
0,6
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
V. Baltic, Applications of the finite state automata for counting restricted permutations and variations, Yugoslav Journal of Operations Research, 22 (2012), Number 2, 183-198 ; DOI: 10.2298/YJOR120211023B. - From N. J. A. Sloane, Jan 02 2013
Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1)
FORMULA
Partial sums of A087509. a(n+1)=sum{j=0..n, sum{k=0..j, if (mod(jk, 3)=2, 1, 0) }}. - Paul Barry, Sep 14 2003
Empirical g.f.: -x^3*(x^2+1) / ((x-1)^3*(x^2+x+1)^2). - Colin Barker, Mar 31 2013
MATHEMATICA
Table[Floor[n/3]Floor[(n+1)/3], {n, 0, 100}] (* or *) LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {0, 0, 0, 1, 1, 2, 4}, 100] (* Harvey P. Dale, Sep 21 2024 *)
PROG
(Magma) [Floor(n/3)*Floor((n+1)/3): n in [0..60]]; // Vincenzo Librandi, Aug 20 2011
(Haskell)
a008133 n = a008133_list !! n
a008133_list = zipWith (*) (tail ts) ts where ts = map (`div` 3) [0..]
-- Reinhard Zumkeller, Oct 09 2011
(PARI) a(n) = floor(n/3)*floor((n+1)/3); /* Joerg Arndt, Mar 31 2013 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved