login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359678
Number of multisets (finite weakly increasing sequences of positive integers) with zero-based weighted sum (A359674) equal to n > 0.
27
1, 2, 4, 4, 6, 9, 8, 10, 14, 13, 16, 21, 17, 22, 28, 23, 30, 37, 30, 38, 46, 38, 46, 59, 46, 55, 70, 59, 70, 86, 67, 81, 96, 84, 98, 115, 95, 114, 135, 114, 132, 158, 127, 156, 178, 148, 176, 207, 172, 201, 227, 196, 228, 270, 222, 255, 296, 255, 295, 338, 278
OFFSET
1,2
COMMENTS
The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i.
LINKS
FORMULA
G.f.: Sum_{k>=2} x^binomial(k,2)/((1 - x^binomial(k,2))*Product_{j=1..k-1} (1 - x^(binomial(k,2)-binomial(j,2)))). - Andrew Howroyd, Jan 22 2023
EXAMPLE
The a(1) = 1 through a(8) = 10 multisets:
{1,1} {1,2} {1,3} {1,4} {1,5} {1,6} {1,7} {1,8}
{2,2} {2,3} {2,4} {2,5} {2,6} {2,7} {2,8}
{3,3} {3,4} {3,5} {3,6} {3,7} {3,8}
{1,1,1} {4,4} {4,5} {4,6} {4,7} {4,8}
{5,5} {5,6} {5,7} {5,8}
{1,1,2} {6,6} {6,7} {6,8}
{1,2,2} {7,7} {7,8}
{2,2,2} {1,1,3} {8,8}
{1,1,1,1} {1,2,3}
{2,2,3}
MATHEMATICA
zz[n_]:=Select[IntegerPartitions[n], UnsameQ@@#&&GreaterEqual @@ Differences[Append[#, 0]]&];
Table[Sum[Append[z, 0][[1]]-Append[z, 0][[2]], {z, zz[n]}], {n, 30}]
PROG
(PARI) seq(n)={Vec(sum(k=2, (sqrtint(8*n+1)+1)\2, my(t=binomial(k, 2)); x^t/((1-x^t)*prod(j=1, k-1, 1 - x^(t-binomial(j, 2)) + O(x^(n-t+1))))))} \\ Andrew Howroyd, Jan 22 2023
CROSSREFS
The one-based version is A320387.
Number of appearances of n > 0 in A359674.
The sorted minimal ranks are A359675, reverse A359680.
The minimal ranks are A359676, reverse A359681.
The maximal ranks are A359757.
A053632 counts compositions by zero-based weighted sum.
A124757 gives zero-based weighted sums of standard compositions, rev A231204.
Sequence in context: A241064 A292671 A210948 * A008133 A237828 A362607
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 15 2023
STATUS
approved