OFFSET
0,4
COMMENTS
Partitions are usually written with parts in descending order, but the conditions are easier to check "visually" if written in ascending order.
Generating function of the "second integrals" of partitions: given a partition (p_1, ..., p_s) written in weakly decreasing order, write the sequence B = (b_1, b_2, ..., b_s) = (p_1, p_1 + p_2, ..., p_1 + ... + p_s). The sequence gives the coefficients of the generating function summing q^(b_1 + ... + b_s) over all partitions of all nonnegative integers. - William J. Keith, Apr 23 2022
From Gus Wiseman, Jan 17 2023: (Start)
Equivalently, a(n) is the number of multisets (weakly increasing sequences of positive integers) with weighted sum n. For example, the Heinz numbers of the a(0) = 1 through a(15) = 7 multisets are:
1 2 3 4 7 6 8 10 15 12 16 18 20 26 24 28
5 11 9 17 19 14 21 22 27 41 30 32
13 23 29 31 33 55 39 34
25 35 37 43 45
49 77 47
65
121
These multisets are counted by A264034. The reverse version is A007294. The zero-based version is A359678.
(End)
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..2000 (terms 0..300 from Seiichi Manyama)
FORMULA
G.f.: Sum_{k>=1} x^binomial(k,2)/Product_{j=1..k-1} (1 - x^(binomial(k,2)-binomial(j,2))). - Andrew Howroyd, Jan 22 2023
EXAMPLE
There are a(29) = 15 such partitions of 29:
01: [29]
02: [10, 19]
03: [11, 18]
04: [12, 17]
05: [13, 16]
06: [14, 15]
07: [5, 10, 14]
08: [6, 10, 13]
09: [6, 11, 12]
10: [7, 10, 12]
11: [8, 10, 11]
12: [3, 6, 9, 11]
13: [5, 7, 8, 9]
14: [2, 4, 6, 8, 9]
15: [3, 5, 6, 7, 8]
There are a(30) = 18 such partitions of 30:
01: [30]
02: [10, 20]
03: [11, 19]
04: [12, 18]
05: [13, 17]
06: [14, 16]
07: [5, 10, 15]
08: [6, 10, 14]
09: [6, 11, 13]
10: [7, 10, 13]
11: [7, 11, 12]
12: [8, 10, 12]
13: [3, 6, 9, 12]
14: [9, 10, 11]
15: [4, 7, 9, 10]
16: [2, 4, 6, 8, 10]
17: [6, 7, 8, 9]
18: [4, 5, 6, 7, 8]
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
ots[y_]:=Sum[i*y[[i]], {i, Length[y]}];
Table[Length[Select[Range[2^n], ots[prix[#]]==n&]], {n, 10}] (* Gus Wiseman, Jan 17 2023 *)
PROG
(Ruby)
def partition(n, min, max)
return [[]] if n == 0
[max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}}
end
def f(n)
return 1 if n == 0
cnt = 0
partition(n, 1, n).each{|ary|
ary << 0
ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
cnt += 1 if ary0.sort == ary0
}
cnt
end
def A320387(n)
(0..n).map{|i| f(i)}
end
p A320387(50)
(PARI) seq(n)={Vec(sum(k=1, (sqrtint(8*n+1)+1)\2, my(t=binomial(k, 2)); x^t/prod(j=1, k-1, 1 - x^(t-binomial(j, 2)) + O(x^(n-t+1)))))} \\ Andrew Howroyd, Jan 22 2023
CROSSREFS
A053632 counts compositions by weighted sum.
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 12 2018
STATUS
approved