The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179255 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are nondecreasing. 11
 1, 1, 1, 2, 2, 3, 4, 5, 5, 8, 9, 10, 13, 15, 16, 22, 24, 26, 33, 36, 39, 50, 54, 58, 70, 77, 83, 100, 109, 116, 137, 150, 159, 186, 202, 216, 249, 270, 288, 328, 355, 379, 428, 462, 491, 554, 597, 633, 707, 760, 807, 899, 964, 1020, 1127, 1211, 1282, 1412, 1512, 1596, 1750, 1873, 1976, 2160, 2305, 2434, 2652, 2826, 2978 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Partitions into distinct parts (p(1), p(2), ..., p(m)) such that p(k-1) - p(k-2) <= p(k) - p(k-1) for all k >= 3. LINKS Fausto A. C. Cariboni, Table of n, a(n) for n = 0..1000 (terms 0..241 from Joerg Arndt) EXAMPLE There are a(17) = 26 such partitions of 17: 01:  [ 1 2 3 4 7 ] 02:  [ 1 2 3 11 ] 03:  [ 1 2 4 10 ]  * 04:  [ 1 2 5 9 ]   * 05:  [ 1 2 14 ]   * 06:  [ 1 3 5 8 ] 07:  [ 1 3 13 ]   * 08:  [ 1 4 12 ]   * 09:  [ 1 5 11 ]   * 10:  [ 1 16 ]   * 11:  [ 2 3 4 8 ] 12:  [ 2 3 5 7 ] 13:  [ 2 3 12 ]   * 14:  [ 2 4 11 ]   * 15:  [ 2 5 10 ]   * 16:  [ 2 15 ]   * 17:  [ 3 4 10 ]   * 18:  [ 3 5 9 ]   * 19:  [ 3 14 ]   * 20:  [ 4 5 8 ]   * 21:  [ 4 13 ]   * 22:  [ 5 12 ]   * 23:  [ 6 11 ]   * 24:  [ 7 10 ]   * 25:  [ 8 9 ]   * 26:  [ 17 ]   * The 21 partitions marked with * have strictly increasing differences, see the example for A179254. - Joerg Arndt, Mar 31 2014 PROG (Sage) def A179255(n):     has_nondecreasing_diffs = lambda x: min(differences(x, 2)) >= 0     allowed = lambda x: len(x) < 3 or has_nondecreasing_diffs(x)     return len([x for x in Partitions(n, max_slope=-1) if allowed(x[::-1])]) # D. S. McNeil, Jan 06 2011 (Ruby) def partition(n, min, max)   return [[]] if n == 0   [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}} end def f(n)   return 1 if n == 0   cnt = 0   partition(n, 1, n).each{|ary|     ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}     cnt += 1 if ary0.sort == ary0.reverse   }   cnt end def A179255(n)   (0..n).map{|i| f(i)} end p A179255(50) # Seiichi Manyama, Oct 12 2018 CROSSREFS Cf. A009994. Cf. A179254 (strictly increasing differences), A179269, A007294. Cf. A240026 (partitions with nondecreasing differences), A240027 (partitions with strictly increasing differences), A320382. Sequence in context: A129306 A322077 A114094 * A332285 A324325 A318284 Adjacent sequences:  A179252 A179253 A179254 * A179256 A179257 A179258 KEYWORD nonn AUTHOR Joerg Arndt, Jan 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 12 07:28 EDT 2021. Contains 343821 sequences. (Running on oeis4.)